甲、乙兩個(gè)籃球運(yùn)動(dòng)員在相同條件下投籃命中率分別為0.82、0.73,則“在一次投籃中至少有一人投籃命中的概率為P=0.82+0.73=1.55”這句話對(duì)不對(duì)?為什么?

      

解:這句話不對(duì).首先,任何事件的概率之和不能超過(guò)1;其次,事件A(甲投籃命中)和事件B(乙投籃命中)不是互斥事件,所以所求事件的概率不等于兩事件概率之和的簡(jiǎn)單相加.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩個(gè)籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為
1
2
與p,且乙投球2次均未命中的概率為
1
16

(Ⅰ)求乙投球的命中率p;
(Ⅱ)求甲投球2次,至少命中1次的概率;
(Ⅲ)若甲、乙兩人各投球2次,求兩人共命中2次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩個(gè)籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為
1
2
與p,且乙投球2次均未命中的概率為
1
16

(Ⅰ)求乙投球的命中率p;
(Ⅱ)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩個(gè)籃球運(yùn)動(dòng)員互不影響地在同一位置上投球,命中率分別為
1
3
與p,且乙投球兩次均為命中的概率為
16
25

(1)求乙投球的命中率p;
(2)求甲投三次,至少命中一次的概率;
(3)若甲、乙二人各投兩次,求兩人共命中兩次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009年)甲、乙兩個(gè)籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為
1
2
3
4

(1)求乙投球2次都不命中的概率;
(2)若甲、乙各投球1次,兩人共命中的次數(shù)記為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩個(gè)籃球運(yùn)動(dòng)員在某賽季的得分情況如右側(cè)的莖葉圖所示,則( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案