考點:利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的概念及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:根據(jù)已知中函數(shù)的解析式,求出函數(shù)的導(dǎo)函數(shù),結(jié)合導(dǎo)數(shù)符號與原函數(shù)單調(diào)性的關(guān)系,分析出函數(shù)的單調(diào)性,進(jìn)而結(jié)合函數(shù)極值的定義得到答案.
解答:
解:(1)∵f(x)=
,
∴f′(x)=
3x2×2(x-1)2-(x3-2)×4(x-1) |
4(x-1)4 |
=
=
,
故當(dāng)x∈(-∞,-1)時,f′(x)>0,當(dāng)x∈(-1,1)時,f′(x)<0,當(dāng)x∈(1,+∞)時,f′(x)≥0,
故f(x)在(-∞,-1)上為增函數(shù),在(-1,1)上為減函數(shù),在(1,+∞)上為增函數(shù),
由f(x)=
在x=1處不連續(xù),
故當(dāng)x=-1時,函數(shù)取極大值-
(2)∵f(x)=x
2e
-x=
,
∴f′(x)=
=
=
,
故當(dāng)x∈(-∞,0)時,f′(x)<0,當(dāng)x∈(0,2)時,f′(x)>0,當(dāng)x∈(2,+∞)時,f′(x)<0,
故f(x)在(-∞,0)上為減函數(shù),在(0,2)上為增函數(shù),在(2,+∞)上為減函數(shù),
故當(dāng)x=0時,函數(shù)取極小值0,當(dāng)x=2時,函數(shù)取極大值
.
點評:本題考查的知識點是利用導(dǎo)數(shù)研究函數(shù)的極值,熟練掌握導(dǎo)數(shù)法求極值的步驟是解答的關(guān)鍵,難度不大,屬于中檔題.