2.設(shè)集合A={x|1≤x≤6,x∈N},對于A的每個非空子集,定義其“交替和”如下:把集合中的數(shù)按從大到小的順序排列,然后從最大的數(shù)開始交替地加減各數(shù)(如:{1,2,5}的“交替和”是5-2+1=4,{6,3}的“交替和”就是6-3=3,{3}的“交替和”就是3).則集合A的所有這些“交替和”的總和為(  )
A.128B.192C.224D.256

分析 根據(jù)“交替和”的定義:求出S2、S3、S4,并根據(jù)其結(jié)果猜測集合N={1,2,3,…,n}的每一個非空子集的“交替和”的總和Sn即可.

解答 解:由題意,S2表示集合N={1,2}的所有非空子集的“交替和”的總和,
又{1,2}的非空子集有{1},{2},{2,1},
∴S2=1+2+2-1=4;
S3=1+2+3+(2-1)+(3-1)+(3-2)+(3-2+1)=12,
S4=1+2+3+4+(2-1)+(3-1)+(4-1)+(3-2)+(4-2)+(4-3)+(3-2+1)+(4-2+1)+(4-3+1)+(4-3+2)+(4-3+2-1)=32,
∴根據(jù)前4項猜測集合N={1,2,3,…,n}的每一個非空子集的“交替和”的總和Sn=n•2n-1
所以S6=6×26-1=6×25=192,
故選:B.

點評 本題主要考查了數(shù)列的應(yīng)用,同時考查了歸納推理的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2sin(-πx+φ),x∈R(其中0≤φ≤$\frac{π}{2}$)的圖象與y軸交于點(0,1).
(1)求函數(shù)f(x)的解析式及單調(diào)遞增區(qū)間;
(2)設(shè)P是函數(shù)f(x)圖象的最高點,M,N是函數(shù)f(x)圖象上距離P最近的兩個零點,求$\overrightarrow{PM}$與$\overrightarrow{PN}$的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.命題:“?x>0,x2+x-1>0”的否定是?x>0,x2+x-1≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ax2+b|x-1|,其中a,b∈(-4,4)且a≠0
(Ⅰ)當(dāng)a∈(0,4),b=1時,求函數(shù)f(x)在[0,2]上的最小值;
(Ⅱ)若存在實數(shù)c,使函數(shù)g(x)=f(x)-c有四個不同的零點,求a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知f(x)為偶函數(shù),且f(x)在[0,+∞)單調(diào)遞增,若f(ax+1)-f(x-2)≤0在$x∈[\frac{1}{2},1]$上恒成立,則實數(shù)a的取值范圍是[-2,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{{{x^2}+3}}{x+1}$.
(1)求函數(shù)f(x)在區(qū)間[0,2]上的最值;
(2)若關(guān)于x的方程(x+1)f(x)-ax=0在區(qū)間(1,4)內(nèi)有兩個不等實根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.對于函數(shù)y=g(x),部分x與y的對應(yīng)關(guān)系如下表:
x123456
y247518
數(shù)列{xn}滿足:x1=2,且對于任意n∈N*,點(xn,xn+1)都在函數(shù)y=g(x)的圖象上,則x1+x2+…+x2015=( 。
A.4054B.5046C.5075D.6047

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知$f(x)=sin(\frac{π}{6}-2x)+1-2{cos^2}x$.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,且$a=1,b+c=2,f(A)=-\frac{1}{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知點P在線段AB上且$\overrightarrow{AP}=\overrightarrow{PB}$,若$\overrightarrow{AB}=λ\overrightarrow{PB}$,則λ=2.

查看答案和解析>>

同步練習(xí)冊答案