6.設(shè)a∈R,a2-1+(a+1)i是純虛數(shù),其中i是虛數(shù)單位,則a=1.

分析 a2-1+(a+1)i是純虛數(shù),可得$\left\{\begin{array}{l}{{a}^{2}-1=0}\\{a+1=0}\end{array}\right.$,解出即可得出.

解答 解:∵a2-1+(a+1)i是純虛數(shù),
∴$\left\{\begin{array}{l}{{a}^{2}-1=0}\\{a+1≠0}\end{array}\right.$,解得a=1.
故答案為:1.

點(diǎn)評(píng) 本題考查了純虛數(shù)的定義、方程的解法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列說法正確的是(m,a,b∈R)( 。
A.am>bm,則a>bB.a>b,則am>bmC.am2>bm2,則a>bD.a>b,則am2>bm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若實(shí)數(shù)x,y滿足不等式$\left\{\begin{array}{l}{y≥x}\\{x+y≥4}\\{x-3y+12≥0}\end{array}\right.$,則①2x-y的最大值是6;②$\sqrt{{x}^{2}+(y-1)^{2}}$最小值是$\frac{{3\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}3,x<0\\{x^2}-2ax+2a,x≥0\end{array}$的圖象上恰好有兩對(duì)關(guān)于原點(diǎn)對(duì)稱的點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(1,3)B.(${\frac{3}{2}$,+∞)C.(-1,3)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.一個(gè)盒子里有3個(gè)分別標(biāo)有號(hào)碼為1,2,3的小球,每次取出一個(gè),記下它的標(biāo)號(hào)后再放回盒子中,共取
3次,則取得小球標(biāo)號(hào)最大值是3的取法有19種(結(jié)果用數(shù)字表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在直角坐標(biāo)系中,坐標(biāo)原點(diǎn)到直線l:3x+4y-10=0的距離是( 。
A.10B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知關(guān)于x的方程x2-2xcosA•cosB+(1-cosC)=0的兩根之和等于兩根之積,則△ABC一定是( 。
A.直角三角形B.鈍角三角形C.等腰三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)為R上的奇函數(shù),當(dāng)x>0時(shí),則f(x)=$\sqrt{x}$,則f(-4)等于( 。
A.-4B.-2C.2D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知P點(diǎn)在橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上,O為坐標(biāo)原點(diǎn),點(diǎn)A、B、F1分別為橢圓的右頂點(diǎn)、上頂點(diǎn)、左焦點(diǎn),且PF1⊥x軸,AB∥OP,|AF1|=$\sqrt{2}$+1.
(1)求橢圓C的方程;
(2)若過原點(diǎn)O的直線l與橢圓C交于M,N兩點(diǎn),求△PMN面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案