【題目】某保險公司研究一款暢銷保險產(chǎn)品的保費與銷量之間的關(guān)系,根據(jù)歷史經(jīng)驗,若每份保單的保費在元的基礎(chǔ)上每增加元,對應(yīng)的銷量(萬份)與(元)有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下的對應(yīng)數(shù)據(jù):

(1)試據(jù)此求出關(guān)于的線性回歸方程;

(2)若把回歸方程當(dāng)做的線性關(guān)系,試計算每份保單的保費定為多少元此產(chǎn)品的保費總收入最大,并求出該最大值;

參考公式:

參考數(shù)據(jù):

【答案】(1);(2)當(dāng)元時,即保費定為元時,保費總收入最大為萬元.

【解析】試題解析(1)利用公式求出線性回歸方程;;

(2)若把回歸方程當(dāng)作y與x的線性關(guān)系,用平均收益率估計此產(chǎn)品的收益率,每份保單的保費定為多少元時此產(chǎn)品可獲得最大收益,并求出該最大收益.

(1)

,帶入公式可得:

故所求線性回歸方程為:

(2)設(shè)每份保單的保費為元,則銷量為,則保費收入為萬元,即

當(dāng)元時,即保費定為元時,保費總收入最大為萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,(a為常數(shù)且a>0).
(1)若函數(shù)的定義域為 ,值域為 ,求a的值;
(2)在(1)的條件下,定義區(qū)間(m,n),[m,n],(m,n],[m,n)的長度為n﹣m,其中n>m,若不等式f(x)+b>0,x∈[0,π]的解集構(gòu)成的各區(qū)間的長度和超過 ,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|log0.5x|,若正實數(shù)m,n(m<n)滿足f(m)=f(n),且f(x)在區(qū)間[m2 , n]上的最大值為4,則n﹣m=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,則f(x)是(
A.周期為π,圖象關(guān)于點 對稱的函數(shù)
B.最大值為2,圖象關(guān)于點 對稱的函數(shù)
C.周期為2π,圖象關(guān)于點 對稱的函數(shù)
D.最大值為2,圖象關(guān)于直線 對稱的函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為(
A.9
B.18
C.27
D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只小蜜蜂在一個棱長為3的正方體玻璃容器內(nèi)隨機(jī)飛行,若蜜蜂在飛行過程中與正方體玻璃容器6個表面中至少有一個的距離不大于1,則就有可能撞到玻璃上面不安全,若始終保持與正方體玻璃容器6個表面的距離均大于1,則飛行是安全的,假設(shè)蜜蜂在正方體玻璃容器內(nèi)飛行到每一位置可能性相同,那么蜜蜂飛行是安全的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個盒子中裝有4張卡片,每張卡片上寫有1個數(shù)字,數(shù)字分別是1,2,3,4,現(xiàn)從盒子中隨機(jī)抽取卡片.
(1)若一次從中隨機(jī)抽取3張卡片,求3張卡片上數(shù)字之和大于或等于8的概率;
(2)若隨機(jī)抽取1張卡片,放回后再隨機(jī)抽取1張卡片,求兩次抽取的卡片中至少一次抽到數(shù)字3的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“奶茶妹妹”對某時間段的奶茶銷售量及其價格進(jìn)行調(diào)查,統(tǒng)計出售價x元和銷售量y杯之間的一組數(shù)據(jù)如下表所示:

價格x

5

5.5

6.5

7

銷售量y

12

10

6

4

通過分析,發(fā)現(xiàn)銷售量y對奶茶的價格x具有線性相關(guān)關(guān)系.
(Ⅰ)求銷售量y對奶茶的價格x的回歸直線方程;
(Ⅱ)欲使銷售量為13杯,則價格應(yīng)定為多少?
注:在回歸直線y= 中, , = =146.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}滿足a1=2,a2=4(a3﹣a4),數(shù)列{bn}滿足bn=3﹣2log2an
(1)求數(shù)列{an},{bn}的通項公式;
(2)令cn= ,求數(shù)列{cn}的前n項和Sn
(3)若λ>0,求對所有的正整數(shù)n都有2λ2﹣kλ+2>a2nbn成立的k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案