3.已知集合A={x|-2<x<2},集合B={1,2},則A∩B={1}.

分析 由交集的定義,即由兩集合的公共元素構(gòu)成的集合,即可得到所求集合.

解答 解:集合A={x|-2<x<2},集合B={1,2},
則A∩B={1}.
故答案為:{1}.

點(diǎn)評(píng) 本題考查集合的運(yùn)算,主要是交集的求法,注意運(yùn)用定義法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<π) 的圖象如圖所示,則ω=$\frac{3}{2}$;φ=$-\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.有2個(gè)男生和2個(gè)女生一起乘車去抗日戰(zhàn)爭(zhēng)紀(jì)念館參加志愿者服務(wù),他們依次上車,則第二個(gè)上車的是女生的概率為( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等極如下表:
質(zhì)量指標(biāo)值mm<185185≤m<205m≥205
等級(jí)三等品二等品一等品
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測(cè)后得到如下的頻率分布直方圖:

(Ⅰ)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品90%”的規(guī)定?
(Ⅱ)在樣本中,按產(chǎn)品等極用分層抽樣的方法抽取8件,再?gòu)倪@8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(III)該企業(yè)為提高產(chǎn)品質(zhì)量,開(kāi)展了“質(zhì)量提升月”活動(dòng),活動(dòng)后再抽樣檢測(cè),產(chǎn)品質(zhì)量指標(biāo)值X近似滿足X~N(218,140}),則“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知i是虛數(shù)單位,復(fù)數(shù)$z=\frac{a-i}{1-i}({a∈R})$,若|z|=1,則a=(  )
A.±1B.1C.-1D.$±\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.如圖,在△ABC中,D是BC的中點(diǎn),E,F(xiàn) 是AD 上的兩個(gè)三等分點(diǎn).$\overrightarrow{BE}•\overrightarrow{CE}=2$,BC=2,則$\overrightarrow{BF}•\overrightarrow{CF}$=$-\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.平面直角坐標(biāo)系xOy中,橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率是$\frac{{\sqrt{3}}}{2}$,
拋物線E:x2=4y的焦點(diǎn)F是C的一個(gè)頂點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)與坐標(biāo)軸不重合的動(dòng)直線l與C交于不同的兩點(diǎn)A和B,與x軸交于點(diǎn)M,且$P(\frac{1}{2},2)$滿足kPA+kPB=2kPM,試判斷點(diǎn)M是否為定點(diǎn)?若是定點(diǎn)求出點(diǎn)M的坐標(biāo);若不是定點(diǎn)請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知x∈R,則“x<1”是“x2<1”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知定義在(0,+∞)上的函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),且f'(x)(xlnx2)>2f(x),則( 。
A.6f(e)>2f(e3)>3f(e2B.6f(e)<3f(e2)<2f(e3C.6f(e)>3f(e2)>2f(e3D.6f(e)<2f(e3)<3f(e2

查看答案和解析>>

同步練習(xí)冊(cè)答案