13.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<π) 的圖象如圖所示,則ω=$\frac{3}{2}$;φ=$-\frac{π}{2}$.

分析 根據(jù)圖象信息直接求出ω 和φ即可.

解答 解:從圖象信息可知:周期T=$4×(\frac{2π}{3}-\frac{π}{3})$=$\frac{4π}{3}$,
∴ω=$\frac{2π}{T}$=$\frac{3}{2}$.
圖象過(guò)坐標(biāo)($\frac{π}{3}$,0),即sin($\frac{3}{2}×\frac{π}{3}$+φ)=0,
∴$\frac{π}{2}+$φ=kπ,k∈Z.
∵|φ|<π,
∴φ=$-\frac{π}{2}$.
故答案為:$\frac{3}{2}$,$-\frac{π}{2}$

點(diǎn)評(píng) 本題主要考查三角函數(shù)的圖象和性質(zhì),根據(jù)圖象求出函數(shù)的解析式是解決本題的關(guān)鍵.要求熟練掌握函數(shù)圖象之間的變化關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若z=1-i,則復(fù)數(shù)z+z2在復(fù)平面上對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(  )
A.(1,-3)B.(-3,1)C.(1,1)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)(1-2x)2013=a0+a1x+a2x2+…+a2013x2013 (x∈R).
(1)求a0+a1+a2+…+a2013的值;
(2)求a1+a3+a5+…+a2013的值;
(3)求|a0|+|a1|+|a2|+…+|a2013|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=4,|$\overrightarrow$|=3,且($\overrightarrow{a}$-3$\overrightarrow$)•(2$\overrightarrow{a}$+$\overrightarrow$)=35.
(1)求向量$\overrightarrow{a}$與$\overrightarrow$的夾角;
(2)設(shè)向量$\overrightarrow{c}$=$\overrightarrow{a}$+λ$\overrightarrow$,當(dāng)λ∈[0,1]時(shí),求|$\overrightarrow{c}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)函數(shù)$f(x)=2\sqrt{3}{sin^2}x-{(sinx-cosx)^2}(x∈R)$.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)把y=f(x)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移$\frac{π}{3}$個(gè)單位,得到函數(shù)y=g(x)的圖象,求$g(-\frac{π}{3})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.將函$y=\frac{{\sqrt{3}}}{2}cosx+\frac{1}{2}sinx$數(shù)的圖象向右平移θ(θ>0)個(gè)單位長(zhǎng)度后關(guān)于y軸對(duì)稱,則θ的最小值是( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)a,b是不同的直線,α,β是不同的平面,則下列四個(gè)命題中錯(cuò)誤的是(  )
A.若a⊥b,a⊥α,b?α,則b∥αB.若a∥α,a⊥β,則α⊥β
C.若a⊥β,α⊥β,則a∥αD.若a⊥b,a⊥α,b⊥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖,圓錐的高PO=$\sqrt{2}$,底面⊙O的直徑AB=2,C是圓上一點(diǎn),且∠CAB=30°,D為AC的中點(diǎn),則點(diǎn)B到平面PAC的距離(  )
A.$\frac{1}{2}$B.$\frac{2\sqrt{2}}{3}$C.$\frac{\sqrt{2}}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知集合A={x|-2<x<2},集合B={1,2},則A∩B={1}.

查看答案和解析>>

同步練習(xí)冊(cè)答案