14.化簡(jiǎn)與求值:
(1)$\frac{cos(2π-α)sin(π+α)}{{sin(\frac{π}{2}+α)tan(3π-α)}}$.
(2)$\frac{{\sqrt{1-2sin{{10}°}cos{{10}°}}}}{{cos{{10}°}-\sqrt{1-{{cos}^2}{{170}°}}}}$.

分析 (1)直接利用誘導(dǎo)公式以及同角三角函數(shù)基本關(guān)系式化簡(jiǎn)求解即可.
(2)利用同角三角函數(shù)基本關(guān)系式化簡(jiǎn)求解即可.

解答 解:(1)$\frac{cos(2π-α)sin(π+α)}{{sin(\frac{π}{2}+α)tan(3π-α)}}$
=$\frac{-cosαsinα}{-cosαtanα}$
=cosα.
(2)$\frac{{\sqrt{1-2sin{{10}°}cos{{10}°}}}}{{cos{{10}°}-\sqrt{1-{{cos}^2}{{170}°}}}}$
=$\frac{|cos10°-sin10°|}{cos10°-sin10°}$
=1.

點(diǎn)評(píng) 本題考查誘導(dǎo)公式以及同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ex-x-1(e是自然對(duì)數(shù)的底數(shù)).
(1)求證:ex≥x+1;
(2)若不等式f(x)>ax-1在x∈[$\frac{1}{2}$,2]上恒成立,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=ax2+ln x.
(1)當(dāng)a=-$\frac{1}{2}$時(shí),求f(x)的極值;
(2)求函數(shù)f(x)的單調(diào)性;
(3)設(shè)函數(shù)g(x)=(2a+1)x,若當(dāng)x∈(1,+∞)時(shí),f(x)<g(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.復(fù)數(shù)z=$\frac{i+1}{i}$,則|z|=( 。
A.1B.-1+iC.$\sqrt{2}$D.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)=2sinx+3cosx的極大值為$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)$f(x)=\left\{\begin{array}{l}|{lnx}|,x>0\\{x^2}+4x+1,x≤0\end{array}\right.$,若關(guān)于x的方程 f2(x)-bf(x)+c=0(b,c∈R)有8個(gè)不同的實(shí)數(shù)根,則$\frac{c-2}{b-1}$的取值范圍為(-∞,-1]∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知sinα=2cosα,則$cos(\frac{7π}{2}-2α)$=(  )
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)y=3sin($\frac{1}{2}$x-$\frac{π}{4}$)
(1)用五點(diǎn)法在給定的坐標(biāo)系中作出函數(shù)的一個(gè)周期的圖象;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)求此函數(shù)的圖象的對(duì)稱軸方程、對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù),在區(qū)間$(\frac{π}{2},π)$上是增函數(shù)的是( 。
A.y=cosxB.y=|sinx|C.y=cos2xD.y=sin2x

查看答案和解析>>

同步練習(xí)冊(cè)答案