17.已知函數(shù)f(x)=ex-x-1(e是自然對(duì)數(shù)的底數(shù)).
(1)求證:ex≥x+1;
(2)若不等式f(x)>ax-1在x∈[$\frac{1}{2}$,2]上恒成立,求正數(shù)a的取值范圍.

分析 (1)要證ex≥x+1,只需證f(x)=ex-x-1≥0,求導(dǎo)得f′(x)=ex-1,利用導(dǎo)數(shù)性質(zhì)能證明ex≥x+1.
(2)不等式f(x)>ax-1在x∈[$\frac{1}{2}$,2]上恒成立,即a<$\frac{{e}^{x}-x}{x}$在x∈[$\frac{1}{2},2$]上恒成立,令g(x)=$\frac{{e}^{x}-x}{x}$,x∈[$\frac{1}{2},2$],利用導(dǎo)數(shù)性質(zhì)求g(x)=$\frac{{e}^{x}-x}{x}$在x∈[$\frac{1}{2},2$]上的最小值,由此能求出正數(shù)a的取值范圍.

解答 (本小題滿分12分)
證明:(1)由題意知,要證ex≥x+1,只需證f(x)=ex-x-1≥0,
求導(dǎo)得f′(x)=ex-1,當(dāng)x∈(0,+∞)時(shí),f′(x)=ex-1>0,
當(dāng)x∈(-∞,0)時(shí),f′(x)=ex-1<0,
∴f(x)在x∈(0,+∞)是增函數(shù),在x∈(-∞,0)時(shí)是減函數(shù),
即f(x)在x=0時(shí)取最小值f(0)=0,
∴f(x)≥f(0)=0,即f(x)=ex-x-1≥0,
∴ex≥x+1.…(6分)
(2)不等式f(x)>ax-1在x∈[$\frac{1}{2}$,2]上恒成立,即ex-x-1>ax-1在x∈[$\frac{1}{2},2$]上恒成立,
亦即a<$\frac{{e}^{x}-x}{x}$在x∈[$\frac{1}{2},2$]上恒成立,令g(x)=$\frac{{e}^{x}-x}{x}$,x∈[$\frac{1}{2},2$],
以下求g(x)=$\frac{{e}^{x}-x}{x}$在x∈[$\frac{1}{2},2$]上的最小值,
${g}^{'}(x)=\frac{{e}^{x}(x-1)}{{x}^{2}}$,當(dāng)x∈[$\frac{1}{2},1$]時(shí),g′(x)<0,
當(dāng)x∈[$\frac{1}{2},1$]時(shí),g′(x)>0,
∴當(dāng)x∈[$\frac{1}{2},1$]時(shí),g(x)單調(diào)遞減,當(dāng)x∈[$\frac{1}{2},1$]時(shí),g(x)單調(diào)遞增,
∴g(x)在x=1處取得最小值為g(1)=e-1,
∴正數(shù)a的取值范圍是(0,e-1).…(12分)

點(diǎn)評(píng) 本題考查不等式的證明,考查正數(shù)的取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.等比數(shù)列{an}中,a1=1,a8=4,函數(shù)f(x)=x(x-a1)(x-a2)…(x-an),則f′(0)(  )
A.0B.16C.64D.256

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.若一次函數(shù)f(x)滿足3f(x+1)-2f(x-1)=2x+7,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x2+mx-lnx.
(Ⅰ)當(dāng)m=0時(shí),求曲線y=f(x)在(1,f(1))處的切線方程;
(Ⅱ)令g(x)=f(x)-x2,當(dāng)x∈(0,e](e是自然常數(shù))時(shí),g(x)≥3,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.西部某縣教委將7位大學(xué)生志愿者(4男3女)分成兩組,分配到兩所小學(xué)支教,若要求女生不能單獨(dú)成組,且每組最多5人,則不同的分配方案共有( 。
A.36種B.68種C.104種D.110種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ax-lnx,a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;   
( 2)當(dāng)x∈(0,e]時(shí),求g(x)=e2x-lnx的最小值;
(3)當(dāng)x∈(0,e]時(shí),證明:e2x-lnx-$\frac{lnx}{x}$>$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列命題錯(cuò)誤的是( 。
A.命題“若m≤0,則方程x2+x+m=0有實(shí)數(shù)根”的逆否命題為:“若方程x2+x+m=0無實(shí)數(shù)根,則m>0”
B.“x2-x-2=0”是“x=2”的必要不充分條件
C.若p∧q為假命題,則p,q中必有一真一假
D.命題“在△ABC中,a=b?A=B?sinA=sinB”為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知直線y=x+2與橢圓Γ:$\frac{x^2}{a^2}$+y2=1(a>1)存在公共點(diǎn).
(1)求a的取值范圍;
(2)求當(dāng)a最小時(shí)橢圓Γ的方程;
(3)在(2)的條件下,若A,B是橢圓Γ上關(guān)于y軸對(duì)稱的兩點(diǎn),Q是橢圓Γ上異于A,B的任意一點(diǎn),直線QA,QB分別與y軸交于點(diǎn)M(0,m),N(0,n),試判斷mn是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.化簡(jiǎn)與求值:
(1)$\frac{cos(2π-α)sin(π+α)}{{sin(\frac{π}{2}+α)tan(3π-α)}}$.
(2)$\frac{{\sqrt{1-2sin{{10}°}cos{{10}°}}}}{{cos{{10}°}-\sqrt{1-{{cos}^2}{{170}°}}}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案