3.把函數(shù)y=sin2x的圖象向右平移$\frac{π}{3}$個(gè)單位后,得到的函數(shù)圖象的解析式為$y=sin(2x-\frac{2π}{3})$.

分析 利用三角函數(shù)的平移變換規(guī)律得到所求.

解答 解:由三角函數(shù)的圖形變換:把函數(shù)y=sin2x的圖象向右平移$\frac{π}{3}$個(gè)單位后,得到的函數(shù)圖象的解析式為$y=sin(2x-\frac{2π}{3})$;
故答案為:$y=sin(2x-\frac{2π}{3})$;

點(diǎn)評(píng) 本題考查了三角函數(shù)圖象的平移變換;屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求下列直線的方程
(1)過(guò)直線l1:2x-3y-1=0和l2:x+y+2=0的交點(diǎn),且平行于直線2x-y+7=0的直線方程
(2)過(guò)點(diǎn)P(2,-1),且橫截距是縱截距的3倍的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)=ax3+bx-2,a,b∈R,若f(-2)=-1,則f(2)的值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)集合A={x|x2-x-6<0},B={x|-3≤x≤1},則A∪B=[-3,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,點(diǎn)P是菱形ABCD所在平面外一點(diǎn),∠BAD=60°,△PCD是等邊三角形,AB=2,PA=2$\sqrt{2}$,M是PC的中點(diǎn).
(Ⅰ)求證:PA∥平面BDM;
(Ⅱ)求證:平面PAC⊥平面BDM;
(Ⅲ)求直線BC與平面BDM的所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知定義在R上的函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤$\frac{π}{2}$),滿足:最大值為2,其圖象相鄰兩個(gè)最低點(diǎn)之間距離為π,且函數(shù)f(x)的圖象關(guān)于點(diǎn)($\frac{π}{12}$,0)對(duì)稱.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若向量$\overrightarrow{a}$=(f(x-$\frac{π}{6}$),1),$\overrightarrow$=($\frac{1}{2}$,-2cosx),$x∈[-\frac{3π}{4},\frac{π}{2}]$,設(shè)函數(shù)$g(x)=\overrightarrow a•\overrightarrow b+\frac{1}{2}$,求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某公司為激勵(lì)創(chuàng)新,計(jì)劃逐年加大研發(fā)資金投入.若該公司2015年全年投入研發(fā)資金130萬(wàn)元,在此基礎(chǔ)上,每年投入的研發(fā)資金比上一年增長(zhǎng)12%.
(1)從2015年起,經(jīng)過(guò)x 年的研發(fā)資金為y 萬(wàn)元,寫出y 關(guān)于x 的函數(shù)解析式;
(2)從哪一年該公司全年投入的研發(fā)資金開(kāi)始超過(guò)200萬(wàn)元?(參考數(shù)據(jù):lg1.12=0.05,lg1.3=0.11,lg2=0.30)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知$\overrightarrow{a}$,$\overrightarrow$是不共線的兩個(gè)向量,且$\overrightarrow{a}$$•\overrightarrow$>0,|$\overrightarrow$|≥4,若對(duì)任意m,n∈R,|$\overrightarrow{a}$+m$\overrightarrow$|的最小值是1,|$\overrightarrow$+n$\overrightarrow{a}$|的最小值是2,則$\overrightarrow{a}$在$\overrightarrow$方向上的投影的最小值是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若x為三角形中的最小內(nèi)角,則函數(shù)y=$\sqrt{2}sin({x+{{45}°}})$的值域是(  )
A.$(0,\frac{{\sqrt{2}}}{2}]$B.$[\frac{1}{2},\frac{{\sqrt{2}}}{2}]$C.$(\frac{1}{2},\frac{{\sqrt{2}}}{2}]$D.$(1,\sqrt{2}]$

查看答案和解析>>

同步練習(xí)冊(cè)答案