【題目】已知相互嚙合的兩個齒輪,大輪有48齒,小輪有20齒,當大輪轉(zhuǎn)動一周時,小輪轉(zhuǎn)動的角是________度,即________rad.如果大輪的轉(zhuǎn)速為(轉(zhuǎn)/分),小輪的半徑為10.5cm,那么小輪周上一點每1s轉(zhuǎn)過的弧長是________.

【答案】864

【解析】

本題可以通過相互嚙合的兩個齒輪轉(zhuǎn)動的齒數(shù)相同,得到小輪轉(zhuǎn)動的角度,得到填空(1)答案,經(jīng)換算得到其弧度,即得到填空(2)答案,再通過大輪的速,得到小輪的轉(zhuǎn)速,從而求出小輪上每一點的轉(zhuǎn)速,得到填空(3)答案,得到本題結(jié)論.

∵相互嚙合的兩個齒輪,大輪有48齒,小輪有20齒,

∴當大輪轉(zhuǎn)動一周時,大輪轉(zhuǎn)動了48個齒,

∴小輪轉(zhuǎn)動周,即,

∴當大輪的轉(zhuǎn)速為時,,小輪轉(zhuǎn)速為

∴小輪周上一點每1s轉(zhuǎn)過的弧度數(shù)為:,

∵小輪的半徑為10.5cm,

∴小輪周上一點每1s轉(zhuǎn)過的弧長為:

故答案為:864;.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】近期,濟南公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,用表示活動推出的天數(shù), 表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如表所示:

根據(jù)以上數(shù)據(jù),繪制了散點圖.

(1)根據(jù)散點圖判斷,在推廣期內(nèi), (均為大于零的常數(shù))哪一個適宜作為掃碼支付的人次關(guān)于活動推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);

(2)根據(jù)(1)的判斷結(jié)果及表中的數(shù)據(jù),建立關(guān)于的回歸方程,并預測活動推出第天使用掃碼支付的 人次;

(3)推廣期結(jié)束后,車隊對乘客的支付方式進行統(tǒng)計,結(jié)果如下

車隊為緩解周邊居民出行壓力,以萬元的單價購進了一批新車,根據(jù)以往的經(jīng)驗可知,每輛車每個月的運營成本約為萬元.已知該線路公交車票價為元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受折優(yōu)惠,掃碼支付的乘客隨機優(yōu)惠,根據(jù)統(tǒng)計結(jié)果得知,使用掃碼支付的乘客中有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠.預計該車隊每輛車每個月有萬人次乘車,根據(jù)給數(shù)據(jù)以事件發(fā)生的頻率作為相應事件發(fā)生的概率,在不考慮其它因素的條件下,按照上述收費標準,假設(shè)這批車需要年才能開始盈利,求的值.

參考數(shù)據(jù):

其中其中

參考公式:

對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計公式分別為: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,以軸為始邊做兩個銳角,它們的終邊分別與單位圓相交于A,B兩點,已知AB的橫坐標分別為

1)求的值; 2)求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)2008年至2016年糧食產(chǎn)量的部分數(shù)據(jù)如下表:

(1)求該地區(qū)2008年至2016年的糧食年產(chǎn)量與年份之間的線性回歸方程;

(2)利用(1)中的回歸方程,分析2008年至2016年該地區(qū)糧食產(chǎn)量的變化情況,并預測該地區(qū) 2018年的糧食產(chǎn)量.

附:回歸直線的斜率和截距的最小二乘估計公式分別為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是偶函數(shù).

(1)的值;

(2)若函數(shù)的圖像與的圖像有交點,求的取值范圍;

(3)若函數(shù),是否存在實數(shù)使得最小值為1,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)當時,求的最大值和最小值;

2)求實數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】楊輝三角,又稱帕斯卡三角,是二項式系數(shù)在三角形中的一種幾何排列.在我國南宋數(shù)學家楊輝所著的《詳解九章算法》一書中用如圖所示的三角形解釋二項展開式的系數(shù)規(guī)律.現(xiàn)把楊輝三角中的數(shù)從上到下,從左到右依次排列,得數(shù)列:.記作數(shù)列,若數(shù)列的前項和為,則___ .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A{x|x22x80},B{x|x2axa2120},若BAA,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人用農(nóng)藥治蟲,由于計算錯誤,A,B兩個噴霧器中分別配制成12%6%的藥水各10千克,實際要求兩個噴霧器中的農(nóng)藥的濃度是一樣的,現(xiàn)在只有兩個能容納1千克藥水的藥瓶,他們從A,B兩個噴霧器中分別取1千克的藥水,A中取得的倒入B,B中取得的倒入A,這樣操作進行了n次后,A噴霧器中藥水的濃度為an%,B噴霧器中藥水的濃度為bn%.

(1)證明an+bn是一個常數(shù);

(2)anan-1的關(guān)系式;

(3)an的表達式.

查看答案和解析>>

同步練習冊答案