一個首項為23,公差為整數(shù)的等差數(shù)列,如果前6項均為正數(shù),第7項起為負(fù)數(shù),則它的公差為
 
考點:等差數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:先設(shè)等差數(shù)列{an}的公差為d,由題意可知a6>0,a7<0,根據(jù)通項公式用d表示出來,求出d的范圍,取其中的整數(shù)即可.
解答: 解:設(shè)等差數(shù)列{an}的公差為d,且d為整數(shù),
由題意得,a6=a1+5d>0,a7=a1+6d<0,
所以23+5d>0,且23+6d<0,
解得-
23
5
<d<-
23
6

又d為整數(shù),則公差d=-4,
故答案為:-4.
點評:本題考查等差數(shù)列的通項公式,根據(jù)通項公式用d表示a6>0,a7<0是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ax2+bx,已知1≤f(-1)≤2,2≤f(1)≤4,若f(-2)=mf(-1)+nf(1).
(1)求m,n的值;
(2)求f(-2)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=(2x-1)2,g(x)=ax2,a>0,滿足f(x)<g(x)的整數(shù)x恰有4個,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的兩個頂點A,B的坐標(biāo)分別是(-5,0),(5,0),且AC,BC所在直線的斜率之積等于m(m≠0),求頂點C的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2-2cos4
等于( 。
A、2sin2
B、-2sin2
C、2cos2
D、-2cos2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)曲線x2=ay在x=2處的切線與直線2x-y-6=0平行,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=2x2+2x在(1,4)處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若ω=-
1
2
+
3
2
i,則ω+ω2=( 。
A、-1
B、1
C、0
D、
1
2
+
3
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A為函數(shù)y=ln(-x2-2x+8)的定義域,集合B為函數(shù)y=x+
1
x+1
的值域.求A∩B.

查看答案和解析>>

同步練習(xí)冊答案