練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題16分)
已知拋物線的頂點在坐標(biāo)原點,對稱軸為
軸,焦點
在直線
上,直線
與拋物線相交于
兩點,
為拋物線上一動點(不同于
),直線
分別交該拋物線的準(zhǔn)線
于點
。
(1)求拋物線方程;
(2)求證:以
為直徑的圓
經(jīng)過焦點
,且當(dāng)
為拋物線的頂點時,圓
與直線
相切。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)已知
為坐標(biāo)原點,點
F、T、M、P分別滿足
.
(1) 當(dāng)
t變化時,求點
P的軌跡方程;
(2) 若
的頂點在點
P的軌跡上,且點
A的縱坐標(biāo)
,
的重心恰好為點
F,
求直線
BC的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)設(shè)橢圓
:
的離心率為
,點
(
,0),
(0,
),原點
到直線
的距離為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)直線
:
與橢圓
相交于
、
不同兩點,經(jīng)過線段
上點
的直線與
軸相交于點
,且有
,
,試求
面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分)已知點(x, y)是曲線C上任意一點,將此點的縱坐標(biāo)變?yōu)樵瓉淼?倍,對應(yīng)的橫坐標(biāo)不變,得到的點滿足方程
;定點M(2,1),平行于OM的直線
在y軸上的截距為
m(
m≠0),直線
與曲線C交于A、B兩個不同點.
(1)求曲線
的方程;
(2)求
m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知圓
為圓上一動點,點
在
上,點
在
上,且滿足
的軌跡為曲線
.
(1)求曲線
的方程;
(2)若直線
與(1)中所求點
的軌跡
交于不同兩點
是坐
標(biāo)原點,且
,求△
的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,拋物線
與雙曲線
有公共焦點
,點
是曲線
在第一象限的交點,且
.
(Ⅰ)求雙曲線
的方程;
(Ⅱ)以
為圓心的圓
與雙曲線的一條漸近線相切,
圓
:
.已知點
,過點
作互相垂
直且分別與圓
、圓
相交的直線
和
,設(shè)
被圓
截
得的弦長為
,
被圓
截得的弦長為
.
是否為定值?
請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知拋物線
的焦點是雙曲線
=1(
)的右頂點,雙曲線的其中一條漸近線方程為
,則雙曲線的離心率為________。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
己知雙曲線
(
,
)的焦點在
軸上,一條漸近線方程是
,其中數(shù)列
是以4為首項的正項數(shù)列,則數(shù)列
通項公式是( )
查看答案和解析>>