設(shè)定義域?yàn)镽的函數(shù)f(x)=
|lg|x-1||,x≠1
0,          x=1
,則關(guān)于x的方程f2(x)+bf(x)+c=0有7個(gè)不同實(shí)數(shù)解的充要條件是 ( 。
分析:關(guān)于x的方程f2(x)+bf(x)+c=0有7個(gè)不同實(shí)數(shù)解,即要求對(duì)應(yīng)于f(x)=某個(gè)常數(shù)有6個(gè)不同實(shí)數(shù)解且必有一個(gè)根為0,根據(jù)題意利用作出f(x)的簡(jiǎn)圖可知,當(dāng)f(x)等于何值時(shí),它有6個(gè)根.從而得出關(guān)于x的方程f2(x)-bf(x)+c=0有7個(gè)不同實(shí)數(shù)解
解答:解:由f(x)圖象知要使方程有7解,
應(yīng)有f(x)=0有3解,
f(x)≠0有4解.
則c=0,b<0,
故選C.
點(diǎn)評(píng):數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問(wèn)題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問(wèn)題便迎刃而解,且解法簡(jiǎn)捷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義域?yàn)镽的函數(shù)f(x)=
5|x-1|-1,x≥0
x2+4x+4,x<0
若關(guān)于x的方程f2(x)-(2m+1)f(x)+m2=0有7個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義域?yàn)镽的函數(shù)f(x)=
5|x-1|-1,x≥0
x2+4x+4,x<0
若關(guān)于x的方程f2(x)-(2m+1)f(x)+m2=0有5個(gè)不同的實(shí)數(shù)解,則m=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義域?yàn)镽的函數(shù)f(x)=
-2x+a2x+1+b
(a,b為實(shí)數(shù))若f(x)是奇函數(shù).
(1)求a與b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并證明;
(3)證明對(duì)任何實(shí)數(shù)x、c都有f(x)<c2-3c+3成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義域?yàn)镽的函數(shù)f(x)=
4
|x-1
(x≠1)
2
 (x=1)
,若關(guān)于x的方程f2(x)+bf(x)+c=0有三個(gè)不同的實(shí)數(shù)解x1、x2、x3,則x12+x22|x32等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案