【題目】已知拋物線C:y2=2px(p>0)的焦點為F,A為C上異于原點的任意一點,過點A的直線l交C于另一點B,交x軸的正半軸于點D,且有丨FA丨=丨FD丨.當點A的橫坐標為3時,△ADF為正三角形.
(1)求C的方程;
(2)若直線l1∥l,且l1和C有且只有一個公共點E,
(。┳C明直線AE過定點,并求出定點坐標;
(ⅱ)△ABE的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.
【答案】
(1)
解:當點A的橫坐標為3時,過點A作AG⊥x軸于G,
A(3, ),F(xiàn)( ,0), ,
∴ .
∵△ADF為正三角形,
∴ .
又∵ ,
∴ ,
∴p=2.
∴C的方程為y2=4x.
當D在焦點F的左側(cè)時, .
又|FD|=2|FG|=2( ﹣3)=p﹣6,
∵△ADF為正三角形,
∴3+ =p﹣6,解得p=18,
∴C的方程為y2=36x.此時點D在x軸負半軸,不成立,舍.
∴C的方程為y2=4x.
(2)
解:(。┰O(shè)A(x1,y1),|FD|=|AF|=x1+1,
∴D(x1+2,0),
∴kAD=﹣ .
由直線l1∥l可設(shè)直線l1方程為 ,
聯(lián)立方程 ,消去x得 ①
由l1和C有且只有一個公共點得△=64+32y1m=0,∴y1m=﹣2,
這時方程①的解為 ,代入 得x=m2,∴E(m2,2m).
點A的坐標可化為 ,直線AE方程為y﹣2m= (x﹣m2),
即 ,
∴ ,
∴ ,
∴ ,
∴直線AE過定點(1,0);
(ⅱ)直線AB的方程為 ,即 .
聯(lián)立方程 ,消去x得 ,
∴ ,
∴ = ,
由(。cE的坐標為 ,點E到直線AB的距離為:
= ,
∴△ABE的面積 = ,
當且僅當y1=±2時等號成立,
∴△ABE的面積最小值為16.
【解析】(1)根據(jù)拋物線的焦半徑公式,結(jié)合等邊三角形的性質(zhì),求出的p值;(2)(ⅰ)設(shè)出點A的坐標,求出直線AB的方程,利用直線l1∥l,且l1和C有且只有一個公共點E,求出點E的坐標,寫出直線AE的方程,將方程化為點斜式,可求出定點;(ⅱ) 利用弦長公式求出弦AB的長度,再求點E到直線AB的距離,得到關(guān)于面積的函數(shù)關(guān)系式,再利用基本不等式求最小值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(Ⅰ)證明:CD⊥AE;
(Ⅱ)證明:PD⊥平面ABE;
(Ⅲ)求二面角A﹣PD﹣C的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.
(Ⅰ)證明:AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C與平面BB1C1C所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,B= ,AC=2 ,cosC= .
(1)求sin∠BAC的值及BC的長度;
(2)設(shè)BC的中點為D,求中線AD的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)是否存在正整數(shù),使得在上恒成立?若存在,求出的最大值并給出推導(dǎo)過程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成四面體A﹣BCD,則在四面體ABCD中,下列結(jié)論正確的是( )
A.平面ABD⊥平面ABC
B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC
D.平面ADC⊥平面ABC
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com