【題目】已知函數(shù).

(Ⅰ)求曲線在點處的切線方程;

(Ⅱ)是否存在正整數(shù),使得上恒成立?若存在,求出的最大值并給出推導過程,若不存在,說明理由.

【答案】(Ⅰ).(Ⅱ).

【解析】試題分析:I求出 , ,利用導數(shù)的幾何意義以及點斜式可得曲線在點處的切線方程;II先根據(jù)時,可得,所以若存在,則正整數(shù)的值只能取, ,利用導數(shù)研究函數(shù)的單調(diào)性,可證明不等式恒成立,從而可得的最大值.

試題解析:(Ⅰ)依題意

,

故所求切線方程為.

(Ⅱ)依題意, ,故,

對一切恒成立,

時,可得,所以若存在,則正整數(shù)的值只能取, .

下面證明當時,不等式恒成立,

,則,

易知),當時, ;當時, .

上是減函數(shù),在上是增函數(shù),

所以,

時,不等式恒成立,所以的最大值是.

【方法點晴】本題主要考查利用導數(shù)求曲線切線以及利用導數(shù)研究函數(shù)的單調(diào)性以及不等式恒成立問題,屬于難題.求曲線切線方程的一般步驟是:(1)求出處的導數(shù),即在點 出的切線斜率(當曲線處的切線與軸平行時,在 處導數(shù)不存在,切線方程為);(2)由點斜式求得切線方程.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】證明下列不等式:
(1)設a,b,c∈R* , 且滿足條件a+b+c=1,證明: ≥9
(2)已知a≥0,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某人在靜水中游泳,速度為4公里/小時,他在水流速度為4公里/小時的河中游泳.
(1)若他垂直游向河對岸,則他實際沿什么方向前進?實際前進的速度為多少?
(2)他必須朝哪個方向游,才能沿與水流垂直的方向前進?實際前進的速度為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的焦點為F,A為C上異于原點的任意一點,過點A的直線l交C于另一點B,交x軸的正半軸于點D,且有丨FA丨=丨FD丨.當點A的橫坐標為3時,△ADF為正三角形.

(1)求C的方程;
(2)若直線l1∥l,且l1和C有且只有一個公共點E,
(ⅰ)證明直線AE過定點,并求出定點坐標;
(ⅱ)△ABE的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某教師調(diào)查了名高三學生購買的數(shù)學課外輔導書的數(shù)量,將統(tǒng)計數(shù)據(jù)制成如下表格:

男生

女生

總計

購買數(shù)學課外輔導書超過

購買數(shù)學課外輔導書不超過

總計

(Ⅰ)根據(jù)表格中的數(shù)據(jù),是否有的把握認為購買數(shù)學課外輔導書的數(shù)量與性別相關;

(Ⅱ)從購買數(shù)學課外輔導書不超過本的學生中,按照性別分層抽樣抽取人,再從這人中隨機抽取人詢問購買原因,求恰有名男生被抽到的概率.

附: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),在處的切線方程為.

(1)求的值

(2)當時,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在銳角△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知 a=2csinA.
(1)求角C的值;
(2)若c= ,且SABC= ,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題共12分)已知函數(shù).

(1)求函數(shù)的極值點;

(2)若f(x)≥x2+1在(0,2)上恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知p:﹣x2+2x﹣m<0對x∈R恒成立;q:x2+mx+1=0有兩個正根.若p∧q為假命題,p∨q為真命題,求m的取值范圍.

查看答案和解析>>

同步練習冊答案