分析 法一:直接利用正弦定理以及余弦定理推出邊的關(guān)系,即可判斷三角形的形狀.
法二:由三角形的知識和和差角的三角函數(shù)公式可得sin(B-C)=0,可得B=C,可得三角形為等腰三角形.
解答 證明:法一:∵sinA=2sinBcosC,
∴利用正弦定理可得:a=2bcosC,
由余弦定理可得:a=2b$•\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$,
可得:b=c,
∴三角形是等腰三角形.
法二:∵在△ABC中sinA=2sinBcosC,
∴sin[π-(B+C)]=2sinBcosC,
∴sin(B+C)=2sinBcosC,
∴sinBcosC+cosBsinC=2sinBcosC,
∴sinBcosC-cosBsinC=0,
∴sin(B-C)=0,
∴B=C,即三角形為等腰三角形.
點評 本題考查三角形形狀的判定,涉及和差角的三角函數(shù)公式,正弦定理以及余弦定理的應(yīng)用,考查計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.5 | B. | 0.7 | C. | 0.3 | D. | 0.6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 144 | B. | 146 | C. | 164 | D. | 461 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2018 | B. | 2017 | C. | 2016 | D. | 2015 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com