已知f(x)的定義域為[-2,3],則函數(shù)F(x)=f(2x-1)-f(-3x)的定義域為
 
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由f(x)的定義域為[-2,3]列不等式組
-2≤2x-1≤3
-2≤-3x≤3
求解x的取值范圍得答案.
解答: 解:∵f(x)的定義域為[-2,3],
-2≤2x-1≤3
-2≤-3x≤3
,解得-
1
2
≤x≤
2
3

∴函數(shù)F(x)=f(2x-1)-f(-3x)的定義域為[-
1
2
,
2
3
]

故答案為:[-
1
2
,
2
3
]
點評:本題考查了函數(shù)的定義域及其求法,關(guān)鍵是掌握該類問題的解決方法,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
3
sinx+cosx在區(qū)間[
π
6
,
π
2
]上的最大值為( 。
A、1
B、
3
C、2
D、1+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=1,|
b
|=2,且
a
b
的夾角為120°.求:
(1)
a
b
;      
(2)(
a
-3
b
)•(2
a
+
b
);
(3)|2
a
-
b
|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

半徑為3的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,求此圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ax2+bx+c,若6a+2b+c=0,f(1)f(3)>0,
(1)若a=1,求f(2)的值
(2)求證:f(x)=0必有兩實數(shù)根x1,x2,且3<x1+x2<5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程(k2-4)x2-4(k+2)x+4=0.
(1)當(dāng)k取何值時,方程無實數(shù);
(2)當(dāng)k取何值時,x=
1
4
是方程的一個根,另一個根存在;
(3)當(dāng)k取何值時,有一正一負(fù)根;
(4)當(dāng)k取何值時,有兩正根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)與g(x)分別由下表給出:
x1234
f(x)2341
x1234
g(x)3412
(1)求g(g(4)),f(g(2)),g(f(3))的值;
(2)求證:f(f(x))=g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+2(a-1)x+3在[4,+∞)上是增函數(shù),則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)的圖象關(guān)于直線x=1對稱,當(dāng)x∈[0,1]時,f(x)=x,且對任意x∈R都有f(x+2)=f(x),g(x)=
f(x),x≥0
-log2013(-2x),x<0
,則方程g(x)-g(-x)=0的實數(shù)根個數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案