已知函數(shù)f(x)=a-
2
2x+1
,a∈R.判斷函數(shù)f(x)的奇偶性,并說(shuō)明理由.
考點(diǎn):函數(shù)奇偶性的判斷
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷即可.
解答: 解:f(x)的定義域?yàn)镽,關(guān)于原點(diǎn)中心對(duì)稱(chēng)      …(1分)
若f(x)為奇函數(shù),則f(0)=0,即f(0)=a-1=0,解得a=1,…(3分)
此時(shí),f(x)=1-
2
2x+1
=
2x-1
2x+1

∴f(-x)=
2-x-1
2-x+1
=
1-2x
1+2x
=-
2x-1
2x+1
=-f(x)滿足是奇函數(shù).
當(dāng)a≠1時(shí),f(1)=a-
2
3
,f(-1)=a-
4
3
,此時(shí)f(-1)≠=f(1),
此時(shí)f(x)是非奇非偶函數(shù).
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性的判斷,根據(jù)奇偶性的定義是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是某幾何體的三視圖,其中正視圖是斜邊長(zhǎng)為2a的直角三角形,側(cè)視圖是半徑為a的半圓,則該幾何體的體積是( 。
A、
3
6
πa3
B、
3
3
πa3
C、
3
πa3
D、2
3
πa3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式x2-2x-3<0的解集是( 。
A、{x|x<-1}
B、{x|x>3}
C、{x|-1<x<3}
D、{x|x<-1或x>3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,銳角∠B所對(duì)的邊b=10.△ABC的面積S△ABC=10,外接圓半徑R=13,則△ABC的周長(zhǎng)C△ABC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)為偶函數(shù)的是( 。
A、y=x
1
2
B、y=sinx
C、y=cosx
D、y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線y=2ax-2與y=(a+2)x+1平行,則a=( 。
A、2B、1C、-1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知ρ=2α•cos(θ+
π
4
)(α>0).
(1)當(dāng)α=
2
時(shí),設(shè)OA為圓的直徑,求點(diǎn)A的極坐標(biāo);
(2)直線l的參數(shù)方程是
x=2t
y=4t
,直線l被圓C截得的弧長(zhǎng)為d,若d
2
,求α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={z|bi•
.
z
-bi•z+2=0,b∈R,z∈C},B={z||z|=1,z∈C},若A∩B=∅,則b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=3,求sinα•cosα的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案