對(duì)于數(shù)列{xn},如果存在一個(gè)正整數(shù)m,使得對(duì)任意的n(n∈N*)都有xn+m=xn成立,那么就把這樣一類(lèi)數(shù)列{xn}稱(chēng)作周期為m的周期數(shù)列,m的最小值稱(chēng)作數(shù)列{xn}的最小正周期,以下簡(jiǎn)稱(chēng)周期.例如當(dāng)xn=2時(shí),{xn}是周期為1的周期數(shù)列,當(dāng)yn=sin(
π
2
n)
時(shí),{yn}的周期為4的周期數(shù)列.
(1)設(shè)數(shù)列{an}滿足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同時(shí)為0),且數(shù)列{an}是周期為3的周期數(shù)列,求常數(shù)λ的值;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且4Sn=(an+1)2
①若an>0,試判斷數(shù)列{an}是否為周期數(shù)列,并說(shuō)明理由;
②若anan+1<0,試判斷數(shù)列{an}是否為周期數(shù)列,并說(shuō)明理由.
(3)設(shè)數(shù)列{an}滿足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,數(shù)列{bn}的前n項(xiàng)和Sn,試問(wèn)是否存在p、q,使對(duì)任意的n∈N*都有p≤
Sn
n
≤q
成立,若存在,求出p、q的取值范圍;不存在,說(shuō)明理由.
由(1)數(shù)列{an}是周期為3的數(shù)列,
得an+3=an,且
an+2=λ an+1-an 
an+3an+2-an+1
?(λ+1)(an+2-an+1)=0,即λ=-1.

(2)當(dāng)n=1時(shí),s1=a1,4s1=(a1+1)2?a1=1,
當(dāng)n≥2時(shí),4an=4sn-4sn-1=(an+1)2-(an-1+1)2.?(an-1)2=(an-1+1)2,即an-an-1=2或an=-an-1(n≥2).
①由an>0有an-an-1=2(n≥2),則{an}為等差數(shù)列,即an=2n-1,
由于對(duì)任意的n都有an+m≠an,所以數(shù)列{an}不是周期數(shù)列.
②由anan+1<0有an=-an-1(n≥2),數(shù)列{an}為等比數(shù)列,即an=(-1)n-1,
即an+2=an對(duì)任意n都成立.
即當(dāng)anan+1<0時(shí)是{an}周期為2的周期數(shù)列.

(3)假設(shè)存在p,q.滿足題設(shè).
于是
an+2=-an+1-an
an+3=-an+2-an+1
?an+3=an,又bn=an+1則bn+3=bn
所以{bn}是周期為3的周期數(shù)列,所以{bn}的前3項(xiàng)分別為2,3,-2.
則sn=
n       n=3k
n+1     n=3k-2
n+3     n=3k-1
,
當(dāng)n=3k時(shí),
sn
n
=1;
當(dāng)n=3k-2時(shí),
sn
n
=1+
1
n
?1<
sn
n
≤2;
當(dāng)n=3k-1時(shí),
sn
n
=1+
3
n
?1<
sn
n
5
2

綜上1≤
sn
n
5
2
,
為使p
sn
n
≤q恒成立,只要p≤1,q
5
2
即可.
綜上,存在p≤1,q
5
2
滿足題設(shè).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)若一個(gè)數(shù)列各項(xiàng)取倒數(shù)后按原來(lái)的順序構(gòu)成等差數(shù)列,則稱(chēng)這個(gè)數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對(duì)于各項(xiàng)都是正數(shù)的數(shù)列{xn},滿足xnan=xn+1an+1=xn+2an+2(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項(xiàng)按如圖所示的規(guī)律排成一個(gè)三角形數(shù)表,當(dāng)x3=8,x7=128時(shí),求第m行各數(shù)的和;
(Ⅲ)對(duì)于(Ⅱ)中的數(shù)列{xn},證明:
n
2
-
1
3
x1-1
x2-1
+
x2-1
x3-1
+…+
xn-1
xn+1-1
n
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12、在數(shù)列{an}中,若存在非零整數(shù)T,使得am+T=am對(duì)于任意的正整數(shù)m均成立,那么稱(chēng)數(shù)列{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.若數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N),如x1=1,x2=a(a∈R,a≠0),當(dāng)數(shù)列{xn}的周期最小時(shí),該數(shù)列的前2010項(xiàng)的和是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)P0是拋物線y=x2上一點(diǎn),且在第一象限.過(guò)點(diǎn)P0作拋物線的切線,交x軸于Q1點(diǎn),過(guò)Q1點(diǎn)作x軸的垂線,交拋物線于P1點(diǎn),此時(shí)就稱(chēng)P0確定了P1.依此類(lèi)推,可由P1確定P2,….記Pn(xn,yn),n=0,1,2,….給出下列三個(gè)結(jié)論:
①xn>0;
②數(shù)列{xn}為單調(diào)遞減數(shù)列;
③對(duì)于?n∈N,?x0>1,使得y0+y1+y2+…+yn<2.
其中所有正確結(jié)論的序號(hào)為
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北京市西城區(qū)(北區(qū))高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

如圖,設(shè)P是拋物線y=x2上一點(diǎn),且在第一象限.過(guò)點(diǎn)P作拋物線的切線,交x軸于Q1點(diǎn),過(guò)Q1點(diǎn)作x軸的垂線,交拋物線于P1點(diǎn),此時(shí)就稱(chēng)P確定了P1.依此類(lèi)推,可由P1確定P2,….記Pn(xn,yn),n=0,1,2,….給出下列三個(gè)結(jié)論:
①xn>0;
②數(shù)列{xn}為單調(diào)遞減數(shù)列;
③對(duì)于?n∈N,?x>1,使得y+y1+y2+…+yn<2.
其中所有正確結(jié)論的序號(hào)為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖南省郴州市安仁一中高三(上)期中數(shù)學(xué)試卷(解析版) 題型:選擇題

在數(shù)列{an}中,若存在非零整數(shù)T,使得am+T=am對(duì)于任意的正整數(shù)m均成立,那么稱(chēng)數(shù)列{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.若數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N),如x1=1,x2=a(a∈R,a≠0),當(dāng)數(shù)列{xn}的周期最小時(shí),該數(shù)列的前2010項(xiàng)的和是( )
A.669
B.670
C.1339
D.1340

查看答案和解析>>

同步練習(xí)冊(cè)答案