2.設(shè)等差數(shù)列{an}的前n項(xiàng)和Sn滿足S5=15,且2a2,a6,a8+1成公比大于1的等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}=\frac{a_n}{2^n}$,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)利用等差數(shù)列的首項(xiàng)與公差通過數(shù)列的和求出a3,利用2a2,a6,a8+1成公比大于1的等比數(shù)列,求出公差,然后求解數(shù)列的通項(xiàng)公式.
(2)化簡數(shù)列的通項(xiàng)公式,利用錯(cuò)位相減法求解數(shù)列的和即可.

解答 解:(1)設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,S5=15,所以a3=3,2a2,a6,a8+1成公比大于1的等比數(shù)列,
所以a62=2a2(a8+1),即:(a3+3d)2=2(a3-d)(a3+5d+1),所以d=1或d=$-\frac{15}{19}$(舍去),
所以a1=a3-2d=3-2=1.
所以an=n,
數(shù)列{an}的通項(xiàng)公式為:an=n;
(2)由(1)可知:設(shè)${b_n}=\frac{a_n}{2^n}$,=n•($\frac{1}{2}$)n,
Tn=1×$\frac{1}{2}$+2×($\frac{1}{2}$)2+3×($\frac{1}{2}$)3+…+n•($\frac{1}{2}$)n…①;
①×2可得:$\frac{1}{2}$Tn=1×($\frac{1}{2}$)2+2×($\frac{1}{2}$)3+3×($\frac{1}{2}$)4+…+(n-1)($\frac{1}{2}$)n+n•($\frac{1}{2}$)n+1…②,
①-②得:$\frac{1}{2}$Tn=$\frac{1}{2}$+($\frac{1}{2}$)2+($\frac{1}{2}$)3+…+($\frac{1}{2}$)n-n•($\frac{1}{2}$)n+1-n•($\frac{1}{2}$)n+1=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=1-($\frac{1}{2}$)n-n•($\frac{1}{2}$)n+1
∴Tn=2-$\frac{n+2}{{2}^{n}}$.

點(diǎn)評(píng) 本題考查數(shù)列求和,數(shù)列通項(xiàng)公式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知F為橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左焦點(diǎn),過點(diǎn)F且互相垂直的兩條直線分別交橢圓于A、B及C、D.
(1)求證:$\frac{1}{AB}$+$\frac{1}{CD}$為定值;
(2)若直線CD交直線l:x=-$\frac{3}{2}$于點(diǎn)P,試探究四邊形OAPB能否為平行四邊形,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若雙曲線mx2+2y2=2的虛軸長為4,則該雙曲線的焦距為( 。
A.$2\sqrt{5}$B.$\sqrt{5}$C.$2\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.?dāng)S一枚均勻的硬幣3次,出現(xiàn)正面向上的次數(shù)恰好為兩次的概率為( 。
A.$\frac{3}{8}$B.$\frac{1}{4}$C.$\frac{5}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知$\frac{sinBsinC}{sinA}$=$\frac{3\sqrt{7}}{2}$,b=4a,a+c=5,則△ABC的面積為$\frac{3\sqrt{7}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知全集U為實(shí)數(shù)集,集合A={x|x2-2x-3<0},B={x|x<1},則A∩B為( 。
A.{x|1≤x<3}B.{x|x<3}C.{x|x≤-1}D.{x|-1<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=|x-1|,不等式f(x+5)≤3m(m>0)的解集為[-7,-1]
(1)求m的值;
(2)已知a>0,b>0,且2a2+b2=3m,求2a$\sqrt{1+^{2}}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知f(x)=x+alnx(a>0)對(duì)于區(qū)間[1,3]內(nèi)的任意兩個(gè)相異實(shí)數(shù)x1,x2,恒有$|f({x_1})-f({x_2})|<|\frac{1}{x_1}-\frac{1}{x_2}|$成立,則實(shí)數(shù)a的取值范圍是(0,$\frac{8}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量$\overrightarrow{m}$=(a,-1),$\overrightarrow{n}$=(b-1,1),且$\overrightarrow{m}$∥$\overrightarrow{n}$,若b>0,則$\frac{1}{|a|}$+$\frac{4|a|}$的最小值是( 。
A.-1B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案