已知函數(shù), 在處取得極小值2.
(1)求函數(shù)的解析式;
(2)求函數(shù)的極值;
(3)設(shè)函數(shù), 若對(duì)于任意,總存在, 使得, 求實(shí)數(shù) 的取值范圍.

(1)函數(shù)的解析式為 ;(2)時(shí),函數(shù)有極小值-2;當(dāng)時(shí),函數(shù)有極大值2 ;(3)a的取值范圍是(-∞,-1]∪[ 3,+∞).

解析試題分析:(1)根據(jù)函數(shù)在極值處導(dǎo)函數(shù)為0,極小值為2聯(lián)立方程組即可求得m,n;(2)由(1)求得函數(shù)解析式,對(duì)函數(shù)求導(dǎo)且讓導(dǎo)函數(shù)為0,即可求得極大值和極小值;(3)依題意只需即可,當(dāng)時(shí),函數(shù)有最小值-2 ,即對(duì)任意總存在,使得的最小值不大于-2 ;而,分、三種情況討論即可.
試題解析:(1)∵函數(shù)處取得極小值2,∴         1分
     ∴    
由②式得m=0或n=1,但m=0顯然不合題意       ∴,代入①式得m=4
                                      2分
經(jīng)檢驗(yàn),當(dāng)時(shí),函數(shù)處取得極小值2 
∴函數(shù)的解析式為                          4分
(2)∵函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/06/4/8pon42.png" style="vertical-align:middle;" />且由(1)有
,解得:
∴當(dāng)x變化時(shí),的變化情況如下表:

<tfoot id="elqms"></tfoot>
    x
    (-∞,-1)
    -1
    (-1,1)
    1
    (1,+∞)


    0
    +
    0



    極小值-2

    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

    已知三次函數(shù),為實(shí)常數(shù)。
    (1)若時(shí),求函數(shù)的極大、極小值;
    (2)設(shè)函數(shù),其中的導(dǎo)函數(shù),若的導(dǎo)函數(shù)為,軸有且僅有一個(gè)公共點(diǎn),求的最小值.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

    已知函數(shù)
    (1)求函數(shù)的單調(diào)區(qū)間;
    (2)若方程有解,求實(shí)數(shù)m的取值范圍;
    (3)若存在實(shí)數(shù),使成立,求證:

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

    已知函數(shù).
    (1)若,求證:當(dāng)時(shí),;
    (2)若在區(qū)間上單調(diào)遞增,試求的取值范圍;
    (3)求證:.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

    甲方是一農(nóng)場(chǎng),乙方是一工廠.由于乙方生產(chǎn)需占用甲方的資源,因此甲方有權(quán)向乙方索賠以彌補(bǔ)經(jīng)濟(jì)損失并獲得一定凈收入,在乙方不賠付甲方的情況下,乙方的年利潤(rùn)x(元)與年產(chǎn)量t(噸)滿足函數(shù)關(guān)系x=2 000.若乙方每生產(chǎn)一噸產(chǎn)品必須賠付甲方S元(以下稱S為賠付價(jià)格).
    (1)將乙方的年利潤(rùn)w(元)表示為年產(chǎn)量t(噸)的函數(shù),并求出乙方獲得最大利潤(rùn)的年產(chǎn)量;
    (2)甲方每年受乙方生產(chǎn)影響的經(jīng)濟(jì)損失金額y=0.002t2(元),在乙方按照獲得最大利潤(rùn)的產(chǎn)量進(jìn)行生產(chǎn)的前提下,甲方要在索賠中獲得最大凈收入,應(yīng)向乙方要求的賠付價(jià)格S是多少?

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

    已知函數(shù),其中.
    (1)當(dāng)時(shí),求函數(shù)處的切線方程;
    (2)若函數(shù)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求的取值范圍;
    (3)已知,如果存在,使得函數(shù)處取得最小值,試求的最大值.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

    已知函數(shù).
    (Ⅰ)若曲線在點(diǎn)處的切線與直線平行,求實(shí)數(shù)的值;
    (Ⅱ)若函數(shù)處取得極小值,且,求實(shí)數(shù)的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

    如圖,現(xiàn)要在邊長(zhǎng)為的正方形內(nèi)建一個(gè)交通“環(huán)島”.正方形的四個(gè)頂點(diǎn)為圓心在四個(gè)角分別建半徑為不小于)的扇形花壇,以正方形的中心為圓心建一個(gè)半徑為的圓形草地.為了保證道路暢通,島口寬不小于,繞島行駛的路寬均不小于.

    (1)求的取值范圍;(運(yùn)算中
    (2)若中間草地的造價(jià)為,四個(gè)花壇的造價(jià)為,其余區(qū)域的造價(jià)為,當(dāng)取何值時(shí),可使“環(huán)島”的整體造價(jià)最低?

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

    已知函數(shù)f(x)=在x=0,x=處存在極值。
    (Ⅰ)求實(shí)數(shù)a,b的值;
    (Ⅱ)函數(shù)y=f(x)的圖象上存在兩點(diǎn)A,B使得△AOB是以坐標(biāo)原點(diǎn)O為直角頂點(diǎn)的直角三角形,且斜邊AB的中點(diǎn)在y軸上,求實(shí)數(shù)c的取值范圍;
    (Ⅲ)當(dāng)c=e時(shí),討論關(guān)于x的方程f(x)=kx(k∈R)的實(shí)根個(gè)數(shù)。

    查看答案和解析>>

    同步練習(xí)冊(cè)答案