14.設(shè)f(x)=x•lnx,若$f'({x_0})=\frac{3}{2}$,則x0=( 。
A.$\sqrt{e}$B.$-\sqrt{e}$C.e2D.$\frac{1}{e^2}$

分析 根據(jù)題意,對(duì)f(x)求導(dǎo)可得f′(x)=lnx+1,將x0代入可得lnx0+1=$\frac{3}{2}$,計(jì)算可得x0的值,即可得答案.

解答 解:根據(jù)題意,f(x)=x•lnx,
則其導(dǎo)數(shù)f′(x)=(x)′lnx+x(lnx)′=lnx+1,
若$f'({x_0})=\frac{3}{2}$,則lnx0+1=$\frac{3}{2}$,
解可得x0=$\sqrt{e}$,
故選:A.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的計(jì)算,關(guān)鍵是正確計(jì)算f(x)的導(dǎo)數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.為了考核某特警部隊(duì)的應(yīng)急反應(yīng)能力,擬準(zhǔn)備把特警隊(duì)員從一目標(biāo)處快速運(yùn)送到另一目標(biāo)處.通過(guò)測(cè)角儀觀測(cè)到觀測(cè)站C在目標(biāo)A南偏西25°的方向上,B、D在A出發(fā)的一條南偏東35°走向的公路上(如圖),測(cè)得C、B相距31千米,D、B相距20千米,C、D相距21千米,求A、D之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.球O與銳二面角α-l-β的兩半平面相切,兩切點(diǎn)間的距離為$\sqrt{3}$,O點(diǎn)到交線(xiàn)l的距離為2,則球O的表面積為( 。
A.$\frac{4π}{3}$B.C.12πD.36π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖,在正方形OABC內(nèi)任取一點(diǎn),取到函數(shù)$y=\sqrt{x}$的圖象與x軸正半軸之間
(陰影部分)的點(diǎn)的概率等于$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.$已知\overrightarrow a=(2,1),\overrightarrow b=(3,-1)$
(1)求|$\overrightarrow{a}$-$\overrightarrow$|;       
(2)求$\overrightarrow{a}$與$\overrightarrow$的夾角θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.(1)解三角不等式:cosx≥$\frac{1}{2}$
(2)在△ABC中,sinA+cosA=$\frac{\sqrt{2}}{2}$,求tanA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知直線(xiàn)l的參數(shù)方程為$\left\{{\begin{array}{l}{x=m+\sqrt{2}t}\\{y=\sqrt{2}t}\end{array}}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為ρ=2,且直線(xiàn)l與曲線(xiàn)C交于A,B兩點(diǎn).
(1)若m=2,求直線(xiàn)l與曲線(xiàn)C兩交點(diǎn)的極坐標(biāo);
(2)若$|AB|≤2\sqrt{3}$,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.(x-2y+3z)7在展開(kāi)式中,x2y3z2項(xiàng)的系數(shù)為-15120.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知不等式x2-5ax+b>0的解集為{x|x>4或x>1}
(1)求實(shí)數(shù)a,b的值;
(2)若0<x<1,f(x)=$\frac{a}{x}+\frac{1-x}$,求f(x)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案