【題目】下列關(guān)于回歸分析的說法中錯誤的有( )個
(1). 殘差圖中殘差點所在的水平帶狀區(qū)域越寬,則回歸方程的預(yù)報精確度越高.
(2). 回歸直線一定過樣本中心。
(3). 兩個模型中殘差平方和越小的模型擬合的效果越好。
(4) .甲、乙兩個模型的分別約為0.88和0.80,則模型乙的擬合效果更好.
A. 4 B. 3 C. 2 D. 1
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為,且對任意的有. 當時,,.
(1)求并證明的奇偶性;
(2)判斷的單調(diào)性并證明;
(3)求;若對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為(0,+),若在(0,+)上為增函數(shù),則稱為“一階比增函數(shù)”;若在(0,+)上為增函數(shù),則稱為”二階比增函數(shù)”。我們把所有“一階比增函數(shù)”組成的集合記為1,所有“二階比增函數(shù)”組成的集合記為2。
(1)已知函數(shù),若∈1,求實數(shù)的取值范圍,并證明你的結(jié)論;
(2)已知0<a<b<c,∈1且的部分函數(shù)值由下表給出:
t | 4 |
求證:;
(3)定義集合,且存在常數(shù)k,使得任取x∈(0,+),<k},請問:是否存在常數(shù)M,使得任意的∈,任意的x∈(0,+),有<M成立?若存在,求出M的最小值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年3月山東省高考改革實施方案發(fā)布:2020年夏季高考開始全省高考考生總成績將由語文、數(shù)學(xué)、外語三門統(tǒng)一高考成績和學(xué)生自主選擇的普通高中學(xué)業(yè)水平等級性考試科目的成績共同構(gòu)成.省教育廳為了解正就讀高中的學(xué)生家長對高考改革方案所持的贊成態(tài)度,隨機從中抽取了100名城鄉(xiāng)家長作為樣本進行調(diào)查,調(diào)查結(jié)果顯示樣本中有25人持不贊成意見.右面是根據(jù)樣本的調(diào)查結(jié)果繪制的等高條形圖.
(Ⅰ)請根據(jù)已知條件與等高條形圖完成下面的列聯(lián)表:
贊成 | 不贊成 | 合計 | |
城鎮(zhèn)居民 | |||
農(nóng)村居民 | |||
合計 |
(Ⅱ)試判斷我們是否有95%的把握認為“贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”?.
【附】,其中.
0.150 | 0.100 | 0.050 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列推理過程不是演繹推理的是( ).
①一切奇數(shù)都不能被2整除,2019是奇數(shù), 2019不能被2整除;
②由“正方形面積為邊長的平方”得到結(jié)論:正方體的體積為棱長的立方;
③在數(shù)列中,,,由此歸納出的通項公式;
④由“三角形內(nèi)角和為”得到結(jié)論:直角三角形內(nèi)角和為 .
A. ① ② B. ② ③ C. ③ ④ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,且PA=PD=DA=2,∠BAD=60°
(I)求證:PB⊥AD;
(II)若PB= , 求二面角A﹣PD﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)觀測,某昆蟲的產(chǎn)卵數(shù)y與溫度x有關(guān),現(xiàn)將收集到的溫度xi和產(chǎn)卵數(shù)yi(i=1,2,…,10)的10組觀測數(shù)據(jù)作了初步處理,得到如下圖的散點圖及一些統(tǒng)計量表.
表中 ,
(1)根據(jù)散點圖判斷, , 與 哪一個適宜作為y與x之間的回歸方程模型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù).
①試求y關(guān)于x回歸方程;
②已知用人工培養(yǎng)該昆蟲的成本h(x)與溫度x和產(chǎn)卵數(shù)y的關(guān)系為h(x)=x(lny﹣2.4)+170,當溫度x(x取整數(shù))為何值時,培養(yǎng)成本的預(yù)報值最小?
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…(un,vn),其回歸直線v=α+βu的斜率和截距的最小二乘估計分別為β=,α=﹣β.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)每一架飛機的引擎在飛行中出現(xiàn)故障率為,且各引擎是否有故障是獨立的,已知4引擎飛機中至少有3個引擎正常運行,飛機就可成功飛行;2引擎飛機要2個引擎全部正常運行,飛機也可成功飛行,要使4引擎飛機比2引擎飛機更安全,則的取值范圍是( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com