分析 (Ⅰ)先整理函數解析式,再根據正弦函數的單調性以及最小正周期的求法即可得到問題的結論.
(Ⅱ)由(I)的解析式,結合三角函數的單調性求函數在x∈[0,$\frac{π}{2}$]上的值域即可.
解答 解:(Ⅰ)因為f(x)=$\frac{1}{2}$(sin2x-$\sqrt{3}$cos2x+$\sqrt{3}$)=sin(2x-$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$.
即f(x)=sin(2x-$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$.
所以函數f(x)的最小正周期T=$\frac{2π}{2}$=π.
由-$\frac{π}{2}$+2kπ≤2x-$\frac{π}{3}$≤$\frac{π}{2}$+2kπ,k∈Z,
解得-$\frac{π}{12}$+kπ≤x≤$\frac{5π}{12}$+kπ,k∈Z,
所以函數f(x)的單調遞增區(qū)間是[-$\frac{π}{12}$+kπ,$\frac{5π}{12}$+kπ],k∈Z.
(Ⅱ)當x∈[0,$\frac{π}{2}$]時,2x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$]
則sin(2x-$\frac{π}{3}$)∈[-$\frac{\sqrt{3}}{2}$,1],所以f(x)∈[0,1+$\frac{\sqrt{3}}{2}$].
于是當x∈[0,$\frac{π}{2}$]時,函數f(x)的取值范圍為[0,1+$\frac{\sqrt{3}}{2}$].
點評 本題考查三角函數恒等變換化簡函數解析式及利用求周期的公式求周期,以及根據三角函數的單調性求三角函數的值域,屬于三角函數的基礎題,考查的知識點點相當全面,知識性較強.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分非必要條件 | B. | 必要非充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $-\frac{17}{8}$ | B. | -2 | C. | $-\frac{7}{8}$ | D. | 0 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com