已知函數(shù)y=sin(4x+
π
2
),求該函數(shù)在[0,2π]的單調(diào)增區(qū)間.
考點(diǎn):正弦函數(shù)的單調(diào)性
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)條件求出函數(shù)的遞增區(qū)間即可得到結(jié)論.
解答: 解:∵y=sin(4x+
π
2
),
∴由2kπ-
π
2
≤4x+
π
2
≤2kπ+
π
2
,k∈Z.
1
2
kπ-
π
4
≤x≤
1
2
kπ,k∈Z.
∴當(dāng)k=1時(shí),遞增區(qū)間為[
π
4
,
π
2
],
當(dāng)k=2時(shí),遞增區(qū)間為[
4
,π],
當(dāng)k=3時(shí),遞增區(qū)間為[
4
,
2
],
當(dāng)k=4時(shí),遞增區(qū)間為[
4
,2π],
即在[0,2π]內(nèi)的單調(diào)增區(qū)間是[
π
4
,
π
2
],[
4
,π],[
4
,
2
],[
4
,2π].
點(diǎn)評(píng):本題主要考查正弦函數(shù)的單調(diào)性的應(yīng)用,要求熟練掌握三角函數(shù)的圖象和性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a∈R,則“
1
a
<1”是“a>1”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(t,-2),
b
=(t-3,t+3).
(1)設(shè)f(t)=
a
b
,求f(t)的最值;
(2)若
a
b
的夾角為鈍角,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a、b、x為正數(shù),且lg(bx)•lg(ax)+1=0,求
a
b
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α頂點(diǎn)在原點(diǎn),始邊在x軸的正半軸上,終邊在直線l:2x-y=0上,且cosα<0,點(diǎn)P(a,b)是α終點(diǎn)邊上的一點(diǎn),且|OP|=
5
,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,過(guò)其右焦點(diǎn)F與長(zhǎng)軸垂直的弦長(zhǎng)為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的左,右頂點(diǎn)分別為A,B,點(diǎn)P是直線x=1上的動(dòng)點(diǎn),直線PA與橢圓的另一交點(diǎn)為M,直線PB與橢圓的另一交點(diǎn)為N,求證:直線MN經(jīng)過(guò)一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某超市在節(jié)日期間進(jìn)行有獎(jiǎng)促銷,凡在該超市購(gòu)物滿400元的顧客,將獲得一次摸獎(jiǎng)機(jī)會(huì),規(guī)則如下:獎(jiǎng)盒中放有除顏色外完全相同的1個(gè)紅球,1個(gè)黃球,1個(gè)白球和1個(gè)黑球.顧客不放回的每次摸出1個(gè)球,若摸到黑球則停止摸獎(jiǎng),否則就繼續(xù)摸球.規(guī)定摸到紅球獎(jiǎng)勵(lì)20元,摸到白球或黃球獎(jiǎng)勵(lì)10元,摸到黑球不獎(jiǎng)勵(lì).
(1)求1名顧客摸球2次停止摸獎(jiǎng)的概率;
(2)記X為1名顧客摸獎(jiǎng)獲得的獎(jiǎng)金數(shù)額,求隨機(jī)變量X的分布律和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)a、b使方程x4+ax3+bx2+ax+1=0,求a2+b2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ex+x-a(a∈R,e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)x∈[0,1]時(shí),f(x)≥0恒成立,求a的取值范圍;
(Ⅱ)函數(shù)g(x)=
f(x)
,若曲線y=cos2x上 存在點(diǎn)(x0,y0),使得g(g(y0))=y0,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案