(logax)logax=x,求x的值.
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用方程兩邊去對數(shù),化簡方程,然后求解即可.
解答: 解:由(logax)logax=x,方程兩邊取以a為底的對數(shù)可得:logax•loga(logax)=logax,
所以loga(logax)=1=logaa,
所以logax=a,
可得x=aa
所求x的值為aa
點評:本題考查方程的解,對數(shù)的運算法則,指數(shù)與對數(shù)的互化,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)全集U=R,集合A={x|
x+2
x-3
<0},B={x||x|=y+2,y∈A},求∁UB,A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方形ABCD中,M為AD中點,N為AB的中點,沿CM,CN分別將△CDM和△CBN折起,使CB與CD重合,設(shè)B點與D點重合于P點,DM的中點折起后變成PM的中點T,則異面直線CT和PN所成角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
sinx
2
+
2
sinx
,x∈(0,
π
2
]的最小值是( 。
A、2
B、1
C、
5
2
D、不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x∈R,x2+1<2x;命題q:若mx2-mx-1<0恒成立,則-4<m≤0,那么(  )
A、“¬p”是假命題
B、“q”是假命題
C、“p∧q”為真命題
D、“p∨q”為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正六棱柱ABCDEF-A1B1C1D1E1F1的棱長都是a,求AB1與A1C所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)m,n,p∈R,且m+n=2-p,m2+n2=12-p2,則p的最大值和最小值的差為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某房屋開發(fā)商出售一套價值50萬元的住宅,可以首付5萬元,以后每過一年付5萬,9年后付清;也可以一次付清并優(yōu)惠x%,問開發(fā)商怎么樣確定優(yōu)惠率可以鼓勵購房者一次付清.(如果今后的九年內(nèi)銀行一年期定期存款稅后利率為2%,按復利計算,計算過程中可以參考以下數(shù)據(jù):1.029=1.19,1.0210=1.2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x+b
1+x2
為奇函數(shù).
(1)求b的值;
(2)證明:函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù);
(3)解關(guān)于x的不等式f(1+2x2)+f(-x2+2x-4)>0.

查看答案和解析>>

同步練習冊答案