A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
分析 令f(x)=$\frac{lnx}{x}$,x∈(0,+∞),利用導(dǎo)數(shù)研究其單調(diào)性即可得出.
解答 解:令f(x)=$\frac{lnx}{x}$,x∈(0,+∞),f′(x)=$\frac{1-lnx}{{x}^{2}}$,可得x>e時,函數(shù)f(x)單調(diào)遞減.
由a>b>e,可得$\frac{lna}{a}$<$\frac{lnb}$,即ab<ba.反之不一定成立,
∴“ab<ba”是“a>b>e”的必要不充分條件.
故選:B.
點評 本題考查了利用導(dǎo)數(shù)研究其單調(diào)性、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
選擇套餐種類 | A | B | C |
選擇每種套餐的人數(shù) | 50 | 25 | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}π$ | B. | $\frac{{\sqrt{3}}}{2}π$ | C. | $\frac{{5\sqrt{5}}}{6}π$ | D. | $\sqrt{6}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-∞,-\frac{5}{3}})$和(1,+∞) | B. | $({-∞,-\frac{5}{3}})∪$(1,+∞) | C. | (-∞,-1)和$({\frac{5}{3},+∞})$ | D. | (-∞,-1)∪$({\frac{5}{3},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+$\frac{1}{2}$<2 | B. | 1+$\frac{1}{2}$+$\frac{1}{3}$<3 | C. | 1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$<3 | D. | 1+$\frac{1}{2}$+$\frac{1}{3}$<2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com