已知等比數(shù)列項(xiàng)和為,且滿足,
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求的值.

(1);(2)143.

解析試題分析:本題主要考查等差數(shù)列與等比數(shù)列的概念、通項(xiàng)公式、前n項(xiàng)和公式、數(shù)列求和及對(duì)數(shù)式的運(yùn)算等數(shù)學(xué)知識(shí),考查思維能力、分析問(wèn)題解決問(wèn)題的能力以及計(jì)算能力.第一問(wèn),法一:利用等比數(shù)列的前n項(xiàng)和公式,將展開,組成方程組,兩式相除,解出,寫出通項(xiàng)公式;法二:利用等比數(shù)列的通項(xiàng)公式,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2f/2/nc3ie1.png" style="vertical-align:middle;" />,,展開,相除,解出,寫出通項(xiàng)公式;第二問(wèn),先將第一問(wèn)的結(jié)論代入,化簡(jiǎn),得到,所以可以證出數(shù)列為等差數(shù)列,所以利用等差數(shù)列的前n項(xiàng)和公式進(jìn)行求和化簡(jiǎn).
試題解析:(1)法一:,整理得,解得,
,所以,通項(xiàng)公式為  5分
法二:,得,所以,通項(xiàng)公式為 .    5分
(2)   6分
  12分
考點(diǎn):1.等比數(shù)列的通項(xiàng)公式;2.等比數(shù)列的前n項(xiàng)和公式;3.對(duì)數(shù)式的運(yùn)算;4.等差數(shù)列的前n項(xiàng)和公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)log2an+1 ,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=4an-3(n∈N*).
(1)證明:數(shù)列{an}是等比數(shù)列;
(2)若數(shù)列{bn}滿足bn+1=an+bn(n∈N*),且b1=2,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列{an}中,a1=1,{an}的前n項(xiàng)和Sn滿足2Snan+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若存在n∈N*,使得λ,求實(shí)數(shù)λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等比數(shù)列{an}滿足:|a2a3|=10,a1a2a3=125.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在正整數(shù)m,使得≥1?若存在,求m的最小值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是等比數(shù)列的前項(xiàng)和,、成等差數(shù)列,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)是否存在正整數(shù),使得?若存在,求出符合條件的所有的集合;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

等比數(shù)列的前項(xiàng)和,已知,,成等差數(shù)列.
(1)求數(shù)列的公比和通項(xiàng);
(2)若是遞增數(shù)列,令,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,數(shù)列是首項(xiàng)為,公比也為的等比數(shù)列,令
(Ⅰ)若,求數(shù)列的前項(xiàng)和;
(Ⅱ)當(dāng)數(shù)列中的每一項(xiàng)總小于它后面的項(xiàng)時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等比數(shù)列單調(diào)遞增,,,.
(Ⅰ)求;
(Ⅱ)若,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案