【題目】已知動點滿足:
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)設(shè)是軌跡上的兩個動點,線段的中點在直線上,線段的中垂線與交于兩點,是否存在點,使以為直徑的圓經(jīng)過點,若存在,求出點坐標,若不存在,請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)記的最大值為,若且,求證:;
(3)若,記集合中的最小元素為,設(shè)函數(shù),求證:是的極小值點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓的焦距為4,且過點.
(1)求橢圓的方程
(2)設(shè)橢圓的上頂點為,右焦點為,直線與橢圓交于、兩點,問是否存在直線,使得為的垂心,若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】海水受日月的引力,在一定的時候發(fā)生漲落的現(xiàn)象叫潮汐.一般地,早潮叫潮,晚潮叫汐.在通常情況下,船在漲潮時駛進航道,靠近碼頭;卸貨后,在落潮時返回海洋.下面是某港口在某季節(jié)某天時間與水深(單位:米)的關(guān)系表:
時刻 | 0:00 | 3:00 | 6:00 | 9:00 | 12:00 | 15:00 | 18:00 | 21:00 | 24:00 |
水深 | 10.0 | 13.0 | 9.9 | 7.0 | 10.0 | 13.0 | 10.1 | 7.0 | 10.0 |
(1)請用一個函數(shù)近似地描述這個港口的水深y與時間t的函數(shù)關(guān)系;
(2)一般情況下,船舶航行時,船底離海底的距離為5米或5米以上認為是安全的(船舶停靠時,船底只要不碰海底即可).某船吃水深度(船底離地面的距離)為6.5米.
①如果該船是旅游船,1:00進港,希望在同一天內(nèi)安全出港,它至多能在港內(nèi)停留多長時間(忽略進出港所需時間)?
②如果該船是貨船,在2:00開始卸貨,吃水深度以每小時0.5米的速度減少,由于臺風等天氣原因該船必須在10:00之前離開該港口,為了使卸下的貨物盡可能多而且能安全駛離該港口,那么該船在什么整點時刻必須停止卸貨(忽略出港所需時間)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將標號為1,2,…,20的20張卡片放入下列表格中,一個格放入一張卡片,選出每列標號最小的卡片,將這些卡片中標號最大的數(shù)設(shè)為;選出每行標號最大的卡片,將這些卡片中標號最小的數(shù)設(shè)為.
甲同學認為有可能比大,乙同學認為和有可能相等,那么甲乙兩位同學的說法中( )
A. 甲對乙不對 B. 乙對甲不對 C. 甲乙都對 D. 甲乙都不對
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
①一個命題的否命題為真,則它的逆命題一定為真;
②若pq為假命題,則p,q均為假命題;
③命題“若x2 -3x+2=0,則x=2”的否命題為“若x2 -3x+2=0,則x≠2”;
④“若a2+b2=0,則a, b全為0”的逆否命題是“若a, b全不為0,則a2+b2≠0”其中正確的命題序號是( )
A.①B.①③C.②④D.③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】判斷下列命題的真假.
(1)如果直線平行于直線,則平行于經(jīng)過的任何一個平面;
(2)如果一條直線不在平面內(nèi),則這條直線就與這個平面平行;
(3)過直線外一點,可以作無數(shù)個平面與這條直線平行;
(4)如果一條直線與一個平面平行,則它與該平面內(nèi)的任何直線都平行.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了推廣一種新飲料,某飲料生產(chǎn)企業(yè)開展了有獎促銷活動:將6罐這種飲料裝一箱,每箱中都放置2罐能夠中獎的飲料.若從一箱中隨機抽出2罐,能中獎的概率為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究性學習小組為了調(diào)查研究學生玩手機對學習的影響,現(xiàn)抽取了30名學生,得到數(shù)據(jù)如表:
玩手機 | 不玩手機 | 合計 | |
學習成績優(yōu)秀 | 8 | ||
學習成績不優(yōu)秀 | 16 | ||
合計 | 30 |
已知在全部的30人中隨機抽取1人,抽到不玩手機的概率為.
(1)請將2×2列聯(lián)表補充完整;
(2)能否在犯錯誤的概率不超過0.005的前提下認為玩手機對學習有影響;
(3)現(xiàn)從不玩手機,學習成績優(yōu)秀的8名學生中任意選取兩人,對他們的學習情況進行全程跟蹤,記甲、乙兩名學生被抽到的人數(shù)為X,求X的分布列和數(shù)學期望.
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com