【題目】已知動點滿足

Ⅰ)求動點的軌跡的方程;

Ⅱ)設(shè)是軌跡上的兩個動點,線段的中點在直線上,線段的中垂線與交于兩點,是否存在點,使以為直徑的圓經(jīng)過點,若存在,求出點坐標,若不存在,請說明理由.

【答案】;(.

【解析】分析:(1)利用橢圓定義即可得到動點的軌跡的方程。

(2)討論直線存在和不存在,當斜率存在時,設(shè)存在點直線的斜率為,運用點差法可得,得到的直線方程為,然后聯(lián)立直線與橢圓方程求解。

詳解:(Ⅰ)

Ⅱ)當直線垂直于軸時,直線方程為,

此時,不合題意;

當直線不垂直于軸時,設(shè)存在點,直線的斜率為,

,

,此時,直線斜率為,的直線方程為

聯(lián)立消去,整理得:

所以

由題意,于是

,因為在橢圓內(nèi),符合條件;

綜上:存在兩點符合條件,坐標為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)記的最大值為,若,求證:;

(3)若,記集合中的最小元素為,設(shè)函數(shù),求證:的極小值點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓的焦距為4,且過點

1)求橢圓的方程

2)設(shè)橢圓的上頂點為,右焦點為,直線與橢圓交于、兩點,問是否存在直線,使得的垂心,若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海水受日月的引力,在一定的時候發(fā)生漲落的現(xiàn)象叫潮汐.一般地,早潮叫潮,晚潮叫汐.在通常情況下,船在漲潮時駛進航道,靠近碼頭;卸貨后,在落潮時返回海洋.下面是某港口在某季節(jié)某天時間與水深(單位:米)的關(guān)系表:

時刻

0:00

3:00

6:00

9:00

12:00

15:00

18:00

21:00

24:00

水深

10.0

13.0

9.9

7.0

10.0

13.0

10.1

7.0

10.0

1)請用一個函數(shù)近似地描述這個港口的水深y與時間t的函數(shù)關(guān)系;

2)一般情況下,船舶航行時,船底離海底的距離為5米或5米以上認為是安全的(船舶停靠時,船底只要不碰海底即可).某船吃水深度(船底離地面的距離)為6.5.

①如果該船是旅游船,1:00進港,希望在同一天內(nèi)安全出港,它至多能在港內(nèi)停留多長時間(忽略進出港所需時間)?

②如果該船是貨船,在2:00開始卸貨,吃水深度以每小時0.5米的速度減少,由于臺風等天氣原因該船必須在10:00之前離開該港口,為了使卸下的貨物盡可能多而且能安全駛離該港口,那么該船在什么整點時刻必須停止卸貨(忽略出港所需時間)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將標號為1,2,…,20的20張卡片放入下列表格中,一個格放入一張卡片,選出每列標號最小的卡片,將這些卡片中標號最大的數(shù)設(shè)為;選出每行標號最大的卡片,將這些卡片中標號最小的數(shù)設(shè)為

甲同學認為有可能比大,乙同學認為有可能相等,那么甲乙兩位同學的說法中(

A. 甲對乙不對 B. 乙對甲不對 C. 甲乙都對 D. 甲乙都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:

①一個命題的否命題為真,則它的逆命題一定為真;

②若pq為假命題,則p,q均為假命題;

③命題x2 -3x+2=0,則x=2”的否命題為x2 -3x+2=0,x≠2”;

a2+b2=0,則a, b全為0”的逆否命題是a, b全不為0,則a2+b2≠0”其中正確的命題序號是( )

A.B.①③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】判斷下列命題的真假.

1)如果直線平行于直線,則平行于經(jīng)過的任何一個平面;

2)如果一條直線不在平面內(nèi),則這條直線就與這個平面平行;

3)過直線外一點,可以作無數(shù)個平面與這條直線平行;

4)如果一條直線與一個平面平行,則它與該平面內(nèi)的任何直線都平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了推廣一種新飲料,某飲料生產(chǎn)企業(yè)開展了有獎促銷活動:將6罐這種飲料裝一箱,每箱中都放置2罐能夠中獎的飲料.若從一箱中隨機抽出2罐,能中獎的概率為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究性學習小組為了調(diào)查研究學生玩手機對學習的影響,現(xiàn)抽取了30名學生,得到數(shù)據(jù)如表:

玩手機

不玩手機

合計

學習成績優(yōu)秀

8

學習成績不優(yōu)秀

16

合計

30

已知在全部的30人中隨機抽取1人,抽到不玩手機的概率為.

1)請將2×2列聯(lián)表補充完整;

2)能否在犯錯誤的概率不超過0.005的前提下認為玩手機對學習有影響;

3)現(xiàn)從不玩手機,學習成績優(yōu)秀的8名學生中任意選取兩人,對他們的學習情況進行全程跟蹤,記甲、乙兩名學生被抽到的人數(shù)為X,求X的分布列和數(shù)學期望.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案