【題目】對某電子元件進(jìn)行壽命追蹤調(diào)查,所得情況如下頻率分布直方圖.
(1)圖中縱坐標(biāo)處刻度不清,根據(jù)圖表所提供的數(shù)據(jù)還原;
(2)根據(jù)圖表的數(shù)據(jù)按分層抽樣,抽取個元件,壽命為之間的應(yīng)抽取幾個;
(3)從(2)中抽出的壽命落在之間的元件中任取個元件,求事件“恰好有一個壽命為,一個壽命為”的概率.
【答案】(1);(2)應(yīng)抽取個;(3).
【解析】
試題(1)根據(jù)題意:,即可求得的值;(2)設(shè)在壽命為之間的應(yīng)抽取個,根據(jù)分層抽樣有:,即可求解壽命為之間的應(yīng)抽取幾個;(3)記“恰好有一個壽命為,一個壽命為”為事件,由(2)知壽命落在之間的元件有個分別記,落在之間的元件有個分別記為:,從中任取個球,即可利用古典概型求解概率.
試題解析:(1)根據(jù)題意:
解得
(2)設(shè)在壽命為之間的應(yīng)抽取個,根據(jù)分層抽樣有:
解得:所以應(yīng)在壽命為之間的應(yīng)抽取個
(3)記“恰好有一個壽命為,一個壽命為”為事件,
由(2)知壽命落在之間的元件有個分別記,落在之間的元件有個分別記為:,從中任取個球,有如下基本事件:
,,
,共有個基本事件
事件“恰好有一個壽命為,一個壽命為”有:
,共有個基本事件
答:事件“恰好有一個壽命為,另一個壽命為”的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在多面體中,,,,,且平面平面.
(1)設(shè)點為線段的中點,試證明平面;
(2)若直線與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形中,,,,四邊形為矩形,,平面平面.
(Ⅰ)求證:平面;
(Ⅱ)求平面與平面所成銳二面角的余弦值;
(Ⅲ)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐的所有頂點都在球的球面上,平面,,,若球的表面積為,則三棱錐的側(cè)面積的最大值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大;
(2)若△ABC的面積S=5,b=5,求sinBsinC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中放有大小和形狀相同而顏色互不相同的小球若干個, 其中標(biāo)號為0的小球1個, 標(biāo)號為1的小球1個, 標(biāo)號為2的小球2個, 從袋子中不放回地隨機抽取2個小球, 記第一次取出的小球標(biāo)號為,第二次取出的小球標(biāo)號為.
(1) 記事件表示“”, 求事件的概率;
(2) 在區(qū)間內(nèi)任取2個實數(shù), 記的最大值為,求事件“”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖象向左平移個單位長度,再向上平移1個單位長度,得到函數(shù)的圖象,則函數(shù)具有性質(zhì)__________.(填入所有正確性質(zhì)的序號)
①最大值為,圖象關(guān)于直線對稱;
②圖象關(guān)于軸對稱;
③最小正周期為;
④圖象關(guān)于點對稱;
⑤在上單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,滿足:,M是的中點.
(1)若,求向量與向量的夾角的余弦值;
(2)若O是線段上任意一點,且,求的最小值:
(3)若點P是內(nèi)一點,且,,,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若滿足,則稱為函數(shù)的一階不動點,若滿足,則稱為函數(shù)的二階不動點,若滿足,且,則稱為函數(shù)的二階周期點.
(1)設(shè).
①當(dāng)時,求函數(shù)的二階不動點,并判斷它是否是函數(shù)數(shù)的二階周期點;
②已知函數(shù)存在二階周期點,求k的值;
(2)若對任意實數(shù)b,函數(shù)都存在二階周期點,求實數(shù)c的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com