精英家教網 > 高中數學 > 題目詳情

【題目】如圖,已知六棱錐PABCDEF的底面是正六邊形,PA⊥平面ABCPAAB,則下列結論正確的是_____.(填序號)①PBAD;②平面PAB⊥平面PBC;③直線BC∥平面PAE;④sinPDA

【答案】

【解析】

由題意,分別根據線面位置關系的判定定理和性質定理,逐項判定,即可得到答案.

PA⊥平面ABC,如果PBAD,可得ADAB,但是ADAB60°,∴①不成立,

AAGPBG,如果平面PAB⊥平面PBC,可得AGBC,∵PABC,∴BC⊥平面PAB,∴BCAB,矛盾,所以②不正確;

BCAE是相交直線,所以BC一定不與平面PAE平行,所以③不正確;

RtPAD中,由于AD2AB2PA,∴sinPDA,所以④正確;

故答案為:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數的圖象與軸相切,且切點在軸的正半軸上.

1)求曲線,直線軸圍成圖形的面積

2若函數上的極小值不大于的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上一點A(2,4).

(1)設圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標準方程;

(2)設平行于OA的直線l與圓M相交于B,C兩點,且BC=OA,

求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,記函數的圖象為曲線C1,函數的圖象為曲線C2

(Ⅰ)比較f2)和1的大小,并說明理由;

(Ⅱ)當曲線C1在直線y1的下方時,求x的取值范圍;

(Ⅲ)證明:曲線C1C2沒有交點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,在區(qū)間上有最大值,有最小值,設

1)求的值;

2)不等式時恒成立,求實數的取值范圍;

3)若方程有三個不同的實數解,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某運輸公司接受了向抗洪救災地區(qū)每天送至少支援物資的任務.該公司有輛載重型卡車與輛載重為型卡車,有名駕駛員,每輛卡車每天往返的次數為型卡車次,型卡車次;每輛卡車每天往返的成本費型為元,型為元.請為公司安排一下,應如何調配車輛,才能使公司所花的成本費最低?若只安排型或型卡車,所花的成本費分別是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐的底面是正方形, ,點E在棱PB上.

(Ⅰ)求證:平面;

(Ⅱ)當且E為PB的中點時,求AE與平面PDB所成的角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在極坐標系中,直線的極坐標方程為,現(xiàn)以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,曲線的參數方程為為參數).

(1)求直線的直角坐標方程和曲線的普通方程;

(2)若曲線為曲線關于直線的對稱曲線,點分別為曲線、曲線上的動點,點坐標為,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)討論函數的單調性;

2)若時,恒成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案