10.如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一部分圖象.
(1)寫出f(x)的解析式;
(2)若將f(x)的圖象向右平移1個(gè)單位得到的g(x)的圖象,求函數(shù)g(x)的單調(diào)遞增區(qū)間.

分析 (1)通過函數(shù)的圖象求出函數(shù)的周期,然后求出ω,利用函數(shù)的圖象經(jīng)過的特殊點(diǎn)求出φ,從而可求f(x)的解析式;
(2)根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律可求g(x)的解析式,利用正弦函數(shù)的性質(zhì)即可得解g(x)的單調(diào)遞增區(qū)間.

解答 解:(1)由函數(shù)的圖象可知:A=2,T=5-(-1)=6,ω=$\frac{2π}{T}$=$\frac{π}{3}$,
由函數(shù)的圖象經(jīng)過(-1,0),
∴0=2sin(φ-$\frac{π}{3}$),
∴φ=kπ+$\frac{π}{3}$,k∈Z.
∵0<φ<π,
∴φ=$\frac{π}{3}$.
故f(x)的解析式為:f(x)=2sin($\frac{π}{3}$x+$\frac{π}{3}$).
(2)將f(x)的圖象向右平移1個(gè)單位得到的g(x)的圖象,
可得g(x)=f(x-1)=2sin[$\frac{π}{3}$(x-1)+$\frac{π}{3}$]=2sin$\frac{π}{3}$x,
令2kπ-$\frac{π}{2}$≤$\frac{π}{3}$x≤2kπ+$\frac{π}{2}$,k∈Z,可得:6k-$\frac{3}{2}$≤x≤6k+$\frac{3}{2}$,k∈Z,
故函數(shù)g(x)的單調(diào)遞增區(qū)間為:[6k-$\frac{3}{2}$,6k+$\frac{3}{2}$],k∈Z.

點(diǎn)評 本題主要考查了y=Asin(ωx+φ)的圖象變換規(guī)律的應(yīng)用,由y=Asin(ωx+φ)的部分圖象確定其解析式,正弦函數(shù)的圖象和性質(zhì),考查了計(jì)算能力和數(shù)形結(jié)合思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求(x2-$\frac{1}{2x}$)9展開式的:
(1)第6項(xiàng)的二項(xiàng)式系數(shù);
(2)第3項(xiàng)的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=|x-2|+|x-a|.
(Ⅰ)若a=-2,解不等式f(x)≥6;
(Ⅱ)如果?x∈R,f(x)≥4,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知“0<t<m(m>0)”是“函數(shù)f(x)=-x2-tx+3t在區(qū)間(0,2)上只有一個(gè)零點(diǎn)”的充分不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.張老師進(jìn)行教學(xué)改革實(shí)驗(yàn),甲班用“模式一”進(jìn)行教學(xué),乙班用“模式二”進(jìn)行教學(xué),經(jīng)過一段時(shí)間后,兩班用同一套試卷進(jìn)行測試(滿分100 分),按照優(yōu)秀(大于或等于90 分)和非優(yōu)秀(90 分以下)統(tǒng)計(jì)成績,得到如下2×2列聯(lián)表:
優(yōu)秀非優(yōu)秀合計(jì)
甲班10
乙班26
合計(jì)90
已知在兩個(gè)班總計(jì)90人中隨機(jī)抽取1人為優(yōu)秀的概率為$\frac{4}{15}$.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d).
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(1)請完成上面的2×2列聯(lián)表;
(2)根據(jù)2×2列聯(lián)表的數(shù)據(jù),判斷能否有95%以上的把握認(rèn)為“成績優(yōu)秀與教學(xué)模式有關(guān)”;
(3)若甲班成績優(yōu)秀的10 名同學(xué)中,男生有6 名,女生有4 名,現(xiàn)從這10 名同學(xué)中選2 名學(xué)生參加座談,求其中至少含1 名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知x,y滿足$\left\{\begin{array}{l}{x+3y-4≤0}\\{3x+y+4≥0}\\{x-y≤0}\end{array}\right.$,若z=$\frac{y}{x+3}$,則z的最大值和最小值為( 。
A.最大值是2,最小值是-$\frac{1}{2}$B.最大值是3,最小值是-$\frac{1}{2}$
C.最大值是2,最小值是-$\frac{1}{3}$D.最大值是3,最小值是-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.為了保衛(wèi)我國領(lǐng)海,保衛(wèi)海上資源,我國海軍將艦隊(duì)分為甲、乙、丙三個(gè)編隊(duì),分別在“黃!、“東海”和“南!边M(jìn)行巡邏,每個(gè)艦隊(duì)選擇“黃!、“東!焙汀澳虾!边M(jìn)行巡邏的概率分別為$\frac{1}{6}$、$\frac{1}{3}$、$\frac{1}{2}$,現(xiàn)在三個(gè)編隊(duì)獨(dú)立地任意的選擇以上三個(gè)海洋的一個(gè)進(jìn)行巡邏.
(1)求甲、乙、丙三個(gè)編隊(duì)所選取的海洋互不相同的概率;
(2)設(shè)巡邏“黃!、“東海”和“南!泵總(gè)編隊(duì)需要投入分別為100萬元、100萬元、200萬元,求投入資金ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.某地為了調(diào)查職業(yè)滿意度,決定用分層抽樣的方法從公務(wù)員、教師、自由職業(yè)者三個(gè)群體的相關(guān)人員中,抽取若干人組成調(diào)查小組,有關(guān)數(shù)據(jù)見如表:
相關(guān)人員數(shù)抽取人數(shù)
公務(wù)員32x
教師48y
自由職業(yè)者644
則調(diào)查小組的總?cè)藬?shù)為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.一張儲(chǔ)蓄卡的密碼共有6位數(shù)字,每位數(shù)字都可以從0~9這10個(gè)數(shù)字中任選一個(gè),某人在銀行自動(dòng)提款機(jī)上取錢時(shí),忘記了密碼的最后一個(gè)數(shù)字,如果他記得密碼的最后一位是偶數(shù),則它恰好在第2次按對的概率是$\frac{1}{5}$.

查看答案和解析>>

同步練習(xí)冊答案