1.定義在R上的函數(shù)f(x),滿足(x-1)f′(x)≤0,且y=f(x+1)為偶函數(shù),當|x1-1|<|x2-1|時,有( 。
A.f(x1)≥f(x2B.f(x1)=f(x2C.f(x1)>f(x2D.f(x1)≤f(x2

分析 由y=f(x+1)為偶函數(shù),可得y=f(x)關(guān)于x=1對稱.分三種情況進行討論:①當x1≥1,x2≥1時,則由|x1-1|<|x2-1|可得f(x1)>f(x2);②當x1<1,x2<1時,同理可得f(x1)>f(x2);③當x1<1,x2≥1時,同理得f(x1)>f(x2);綜上得到答案.

解答 解:因為函數(shù)y=f(x+1)為偶函數(shù),所以y=f(x+1)=f(-x+1),
即函數(shù)y=f(x)關(guān)于x=1對稱,所以f(2-x1)=f(x1),f(2-x2)=f(x2).
當x>1時,f'(x)≤0,此時函數(shù)y=f(x)單調(diào)遞減,當x<1時,f'(x)≥0,此時函數(shù)y=f(x)單調(diào)遞增.
①若x1≥1,x2≥1,則由|x1-1|<|x2-1|,得x1-1<x2-1,即1≤x1<x2,所以f(x1)>f(x2).
②同理若x1<1,x2<1,由|x1-1|<|x2-1|,得-(x1-1)<-(x2-1),即x2<x1<1,所以f(x1)>f(x2).
③若x1,x2中一個大于1,一個小于1,不妨設(shè)x1<1,x2≥1,則-(x1-1)<x2-1,
可得1<2-x1<x2,所以f(2-x1)>f(x2),即f(x1)>f(x2).
綜上有f(x1)>f(x2).
故選C.

點評 本題主要考查函數(shù)的導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在區(qū)間[0,π]上隨機地取一個數(shù)x,則事件“-1≤tanx≤$\sqrt{3}$”發(fā)生的概率為( 。
A.$\frac{7}{12}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.將函數(shù)$y=cos(2x+\frac{π}{6})$圖象上的點$P(\frac{π}{4},t)$向右平移m(m>0)個單位長度得到點P',若P'位于函數(shù)y=cos2x的圖象上,則(  )
A.$t=-\frac{{\sqrt{3}}}{2}$,m的最小值為$\frac{π}{6}$B.$t=-\frac{{\sqrt{3}}}{2}$,m的最小值為$\frac{π}{12}$
C.$t=-\frac{1}{2}$,m的最小值為$\frac{π}{6}$D.$t=-\frac{1}{2}$,m的最小值為$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知等差數(shù)列{an}的首項為a1,公差為d,其前n項和為Sn,若直線y=a1x+m與在y軸上的截距為1的直線x+2y-d=0垂直,則數(shù)列{$\frac{1}{{S}_{n}}$}的前100項的和為$\frac{100}{101}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.過拋物線C:x2=4y的焦點F作直線l交拋物線C于A、B兩點,若|AB|=5,則線段AB中點的縱坐標為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=sin2ωx-$\frac{1}{2}$(ω>0)的周期為$\frac{π}{2}$,若將其圖象沿x軸向右平移a個單位(a>0),所得圖象關(guān)于原點對稱,則實數(shù)a的最小值為( 。
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{2}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知正方體ABCD-A1B1C1D1,點E,F(xiàn),G分別是線段B1B,AB和A1C上的動點,觀察直線CE與D1F,CE與D1G.給出下列結(jié)論:
①對于任意給定的點E,存在點F,使得D1F⊥CE;
②對于任意給定的點F,存在點E,使得CE⊥D1F;
③對于任意給定的點E,存在點G,使得D1G⊥CE;
④對于任意給定的點G,存在點E,使得CE⊥D1G.
其中正確結(jié)論的個數(shù)是( 。
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=sin(2x+$\frac{π}{4}$)(x∈[0,$\frac{9π}{8}$]),若方程f(x)=a恰好有三個根,分別為x1,x2,x3(x1<x2<x3),則x1+2x2+x3的值為( 。
A.πB.$\frac{3π}{4}$C.$\frac{3π}{2}$D.$\frac{5π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(n)=$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{3n+1}$,其中n∈N*,若有f(n)>$\frac{a}{24}$都成立.
(1)求正整數(shù)a的最大值a0;
(2)證明不等式f(n)>$\frac{a_0}{24}$(其中n∈N*).

查看答案和解析>>

同步練習(xí)冊答案