【題目】揚州瘦西湖隧道長米,設(shè)汽車通過隧道的速度為米/秒.根據(jù)安全和車流的需要,,相鄰兩車之間的安全距離米;,相鄰兩車之間的安全距離米(其中是常數(shù)).當時,,當時,

(1)求的值;

(2)一列汽車組成的車隊勻速通過該隧道(第一輛汽車車身長為米,其余汽車車身長為米,每輛汽車速度均相同).記從第一輛汽車車頭進入隧道,至第汽車車尾離開隧道所用的時間為秒.

表示為的函數(shù);

要使車隊通過隧道時間不超過秒,求汽車速度的范圍.

【答案】(1);(2) 汽車速度的范圍為

【解析】

試題分析:(1)時,,,可求出,由時,可求出

(2)分別求函數(shù)的解析式,寫成分段函數(shù)形式即可;時,不符合題意;當時解不等式即可.

試題解析: 時,,則,

時,

;所以

⑵①,

,

所以

,,不符合題意,

,,解得,

所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】知函數(shù),且函數(shù)處的切線平行于直線.

(1)求實數(shù)的值;

(2)若在上存在一點,使得成立.求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)在區(qū)間 上有最大值,最小值.

(1)求函數(shù)的解析式;

(2)設(shè).時恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列說法,正確的個數(shù)是

若兩直線的傾斜角相等,則它們的斜率也一定相等;

一條直線的傾斜角為30°;

傾斜角為0°的直線只有一條;

直線的傾斜角α的集合{α|0°≤α<180°}與直線集合建立了一一對應(yīng)關(guān)系.

A.0 B.1

C.2 D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),

(1)的極值;

(2)設(shè),記上的最大值為,求函數(shù)的最小值;

(3)設(shè)函數(shù)為常數(shù)),若使上恒成立的實數(shù)有且只有一個,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知點,在直線上運動,過點垂直的直線和線段的垂直平分線相交于點。

(1)求動點的軌跡的方程;

(2)過(1)中軌跡上的點作兩條直線分別與軌跡相交于,兩點。試探究:當直線的斜率存在且傾斜角互補時,直線的斜率是否為定值?若是,求出這個定值;若不是,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國乒乓球隊備戰(zhàn)里約奧運會熱身賽選拔賽于2016年7月14日在山東威海開賽.種子選手,,三位非種子選手分別進行一場對抗賽,按以往多次比賽的統(tǒng)計,獲勝的概率分別為,,且各場比賽互不影響.

(1)若至少獲勝兩場的概率大于入選征戰(zhàn)里約奧運會的最終大名單,否則不予入選,問是否會入選最終的大名單?

(2)求獲勝場數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線過點,且焦點為,直線與拋物線相交于兩點.

(1)求拋物線的方程,并求其準線方程;

(2)若直線經(jīng)過拋物線的焦點,當線段的長等于5時,求直線方程.

(3)若,證明直線必過一定點,并求出該定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于數(shù)25,規(guī)定第1次操作為23+53=133,第2次操作為13+33+33=55,如此反復(fù)操作,則第2 017次操作后得到的數(shù)是(  )

A. 25 B. 250

C. 55 D. 133

查看答案和解析>>

同步練習冊答案