【題目】已知函數(shù),且函數(shù)在處的切線平行于直線.
(1)求實(shí)數(shù)的值;
(2)若在上存在一點(diǎn),使得成立.求實(shí)數(shù)的取值范圍.
【答案】(1)(2)或.
【解析】
試題分析:(1)由導(dǎo)數(shù)幾何意義得所以求導(dǎo)數(shù)列式得(2)本題不宜分離,因此作差構(gòu)造函數(shù),利用分類討論法求函數(shù)最小值:由于,所以討論與1,e的大小,分三種情況:當(dāng)時(shí),的最小值為,當(dāng)時(shí),的最小值為,當(dāng)時(shí),的最小值為,解對(duì)應(yīng)不等式即得.
試題解析:(1)的定義域?yàn)?/span>,函數(shù)在處的切線平行于直線..
(2)若在上存在一點(diǎn),使得成立,構(gòu)造函數(shù)在上的最小值小于零.,
①當(dāng)時(shí),即時(shí),在上單調(diào)遞減,所以的最小值為,由可得,;
②當(dāng)時(shí),即時(shí),在上單調(diào)遞增,所以的最小值為,由可得;
③當(dāng)時(shí),即時(shí),可得的最小值為,此時(shí),不成立.綜上所述:可得所求的范圍是或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù),.
(Ⅰ)求的單調(diào)區(qū)間和極值;
(Ⅱ)證明:若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊矩形空地,要在這塊空地上開辟一個(gè)內(nèi)接四邊形為綠地,使其四個(gè)頂點(diǎn)分別落在矩形的四條邊上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,設(shè)AE=x,綠地面積為y.
(1)寫出y關(guān)于x的函數(shù)關(guān)系式,并指出這個(gè)函數(shù)的定義域;
(2)當(dāng)AE為何值時(shí),綠地面積y最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),令,其中是函數(shù)的導(dǎo)函數(shù).
(1)當(dāng)時(shí),求的極值;
(2)當(dāng)時(shí),若存在,使得恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司采用招考方式引進(jìn)人才,規(guī)定必須在,三個(gè)測(cè)試點(diǎn)中任意選取兩個(gè)進(jìn)行測(cè)試,若在這兩個(gè)測(cè)試點(diǎn)都測(cè)試合格,則可參加面試,否則不被錄用,已知考生在每測(cè)試個(gè)點(diǎn)測(cè)試結(jié)果互不影響,若考生小李和小王一起前來參加招考,小李在測(cè)試點(diǎn)測(cè)試合格的概率分別為,小王在上述三個(gè)測(cè)試點(diǎn)測(cè)試合格的概率都是.
(1)問小李選擇哪兩個(gè)測(cè)試點(diǎn)測(cè)試才能使得可以參加面試的可能性最大?請(qǐng)說明理由;
(2)假設(shè)小李選擇測(cè)試點(diǎn)進(jìn)行測(cè)試,小王選擇測(cè)試點(diǎn)進(jìn)行測(cè)試,記為兩人在各測(cè)試點(diǎn)測(cè)試合格的測(cè)試點(diǎn)個(gè)數(shù)之和,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商店計(jì)劃每天購(gòu)進(jìn)某商品若干件,商店每銷售一件該商品可獲利潤(rùn)60元,若供大于求,剩余商品全部退回,但每件商品虧損10元;若供不應(yīng)求,則從外部調(diào)劑,此時(shí)每件調(diào)劑商品可獲利40元.
(1)若商品一天購(gòu)進(jìn)該商品10件,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:件,)的函數(shù)解析式;
(2)商店記錄了50天該商品的日需求量(單位:件,),整理得下表:
若商店一天購(gòu)進(jìn)10件該商品,以50天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(rùn)在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩同學(xué)在高考前各做了5次立定跳遠(yuǎn)測(cè)試,測(cè)得甲的成績(jī)?nèi)缦?/span>(單位:米):2.20,2.30,2.30,2.40,2.30,若甲、乙兩人的平均成績(jī)相同,乙的成績(jī)的方差是0.005,那么甲、乙兩人成績(jī)較穩(wěn)定的是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓心坐標(biāo)為的圓與軸及直線分別相切于、兩點(diǎn),另一圓與圓外切,且與軸及直線分別相切于、兩點(diǎn).
(1)求圓和圓的方程;
(2)過點(diǎn)作直線的平行線,求直線被圓截得的弦的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】揚(yáng)州瘦西湖隧道長(zhǎng)米,設(shè)汽車通過隧道的速度為米/秒.根據(jù)安全和車流的需要,當(dāng)時(shí),相鄰兩車之間的安全距離為米;當(dāng)時(shí),相鄰兩車之間的安全距離為米(其中是常數(shù)).當(dāng)時(shí),,當(dāng)時(shí),.
(1)求的值;
(2)一列由輛汽車組成的車隊(duì)勻速通過該隧道(第一輛汽車車身長(zhǎng)為米,其余汽車車身長(zhǎng)為米,每輛汽車速度均相同).記從第一輛汽車車頭進(jìn)入隧道,至第輛汽車車尾離開隧道所用的時(shí)間為秒.
①將表示為的函數(shù);
②要使車隊(duì)通過隧道的時(shí)間不超過秒,求汽車速度的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com