【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).

1)求的解析式及單調(diào)遞減區(qū)間;

2)是否存在常數(shù),使得對(duì)于定義域內(nèi)的任意, 恒成立,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1,單調(diào)遞減區(qū)間為.(2

【解析】試題分析:

(1)由題意可得,對(duì)函數(shù)求導(dǎo)可得函數(shù)的單調(diào)減區(qū)間為

(2)不等式等價(jià)于

當(dāng)時(shí),令,由函數(shù)的性質(zhì)可得;

當(dāng)時(shí),可得,

綜合①②可得: .

試題解析:

(I),

又由題意有: ,

此時(shí), ,

,

函數(shù)的單調(diào)減區(qū)間為

(說(shuō)明:減區(qū)間寫為的扣分).

(II)要恒成立,

①當(dāng)時(shí), ,則要: 恒成立,

再令,

內(nèi)遞減,

當(dāng)時(shí),

,

內(nèi)遞增,

②當(dāng)時(shí), ,則要: 恒成立,

由①可知,當(dāng)時(shí), ,

內(nèi)遞增,

當(dāng)時(shí), ,故,

內(nèi)遞增, ,

綜合①②可得:

即存在常數(shù)滿足題意.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1,求曲線在點(diǎn)處的切線方程;

2若函數(shù)的圖象與函數(shù)的圖象在區(qū)間上有公共點(diǎn),求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

1求函數(shù)的單調(diào)區(qū)間;

2恒成立試確定實(shí)數(shù)的取值范圍;

3證明:,).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用數(shù)學(xué)歸納法證明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用歸納假設(shè)證明當(dāng)n=k+1時(shí)的情況,只需展開(  )

A. (k+3)3 B. (k+2)3

C. (k+1)3 D. (k+1)3+(k+2)3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若雙曲線x2 / 4y2 / b2="1" (b0) 的漸近線方程為y=±1/2 x ,則b等于 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題所有能被2整除的數(shù)都是偶數(shù)的否定是

A. 所有不能被2整除的數(shù)都是偶數(shù)

B. 所有能被2整除的數(shù)都不是偶數(shù)

C. 存在一個(gè)不能被2整除的數(shù)是偶數(shù)

D. 存在一個(gè)能被2整除的數(shù)不是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1,解不等式;

2若不等式對(duì)一切實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A={x|x2-3x<0},B={x|-2≤x≤2},則A∩B=(  )

A. {x|2≤x<3} B. {x|-2≤x<0}

C. {x|0<x≤2} D. {x|-2≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行了調(diào)查,通過(guò)抽樣,獲得了某年位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖中的值;

(2)設(shè)該市有萬(wàn)居民,估計(jì)全市居民中月均用水量不低于噸的人數(shù).說(shuō)明理由;

(3)估計(jì)居民月均用水量的中位數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案