【題目】已知函數(shù)().
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,試確定實(shí)數(shù)的取值范圍;
(3)證明:(,且).
【答案】(1)當(dāng)k≤0時(shí),函數(shù)f(x)在(1,+∞)為增函數(shù),當(dāng)k>0時(shí),函數(shù)f(x)在(1,)為減函數(shù),在(,+∞)為增函數(shù).(2)[1,+∞)(3)詳見解析
【解析】
試題分析:(1)先求導(dǎo)數(shù),再確定導(dǎo)函數(shù)在定義區(qū)間上零點(diǎn)情況:當(dāng)k≤0時(shí),導(dǎo)函數(shù)恒大于零,為增函數(shù);當(dāng)k>0時(shí),由一個(gè)零點(diǎn)x= ,先減后增(2)不等式恒成立問(wèn)題,一般轉(zhuǎn)化Wie對(duì)應(yīng)函數(shù)最值問(wèn)題,即,結(jié)合(1)的單調(diào)性情況,可得k>0且f()=ln≤0解得k≥1,(3)利用導(dǎo)數(shù)證明不等式,一般方法為構(gòu)造恰當(dāng)函數(shù),利用其增減性進(jìn)行證明:因?yàn)?/span>k=1時(shí),f(x)≤0恒成立,即ln(x﹣1)<x﹣2,令,則,代入疊加得證
試題解析:(I)∵f(x)=ln(x﹣1)﹣k(x﹣1)+1,(x>1)
∴f′(x)= ﹣k,
當(dāng)k≤0時(shí),f′(x)>0恒成立,故函數(shù)在(1,+∞)為增函數(shù),
當(dāng)k>0時(shí),令f′(x)=0,得x=
當(dāng)f′(x)<0,即1<x<時(shí),函數(shù)為減函數(shù),
當(dāng)f′(x)>0,即x>時(shí),函數(shù)為增函數(shù),
綜上所述,當(dāng)k≤0時(shí),函數(shù)f(x)在(1,+∞)為增函數(shù),
當(dāng)k>0時(shí),函數(shù)f(x)在(1,)為減函數(shù),在(,+∞)為增函數(shù).
(Ⅱ)由(1)知,當(dāng)k≤0時(shí),f′(x)>0函數(shù)f(x)在定義域內(nèi)單調(diào)遞增,f(x)≤0不恒成立,
當(dāng)k>0時(shí),函數(shù)f(x)在(1,)為減函數(shù),在(,+∞)為增函數(shù).
當(dāng)x=時(shí),f(x)取最大值,f()=ln≤0
∴k≥1,即實(shí)數(shù)k的取值范圍為[1,+∞)
(Ⅲ)由(2)知k=1時(shí),f(x)≤0恒成立,即ln(x﹣1)<x﹣2
∴<1﹣,
∵= = < =
取x=3,4,5…n,n+1累加得
∴+…+<+++…+ = ,(n∈N,n>1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)想通過(guò)檢查發(fā)票及銷售記錄的2%來(lái)快速估計(jì)每月的銷售總額.采取如下方法:從某本發(fā)票的存根中隨機(jī)抽一張,如15號(hào),然后按序往后將65號(hào),115號(hào),165號(hào),…發(fā)票上的銷售額組成一個(gè)調(diào)查樣本.這種抽取樣本的方法是( )
A. 抽簽法 B. 隨機(jī)數(shù)法
C. 系統(tǒng)抽樣法 D. 其他方式的抽樣
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題:①三點(diǎn)確定一個(gè)平面;②一條直線和一個(gè)點(diǎn)確定一個(gè)平面;③若四點(diǎn)不共面,則每三點(diǎn)一定不共線;④三條平行直線確定三個(gè)平面.其中正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在組織結(jié)構(gòu)圖中,一般采用_____結(jié)構(gòu)繪制,它直觀,容易理解,被應(yīng)用于很多領(lǐng)域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四個(gè)小動(dòng)物換座位,開始時(shí)鼠、猴、兔、貓分別坐1,2,3,4號(hào)座位上(如圖).第1次前后排動(dòng)物互換座位,第2次左右列動(dòng)物互換座位……這樣交替進(jìn)行下去,那么第2 005次互換座位后,小兔的座位號(hào)是( )
1鼠 | 2猴 |
3兔 | 4貓 |
開始
1兔 | 2貓 |
3鼠 | 4猴 |
第一次
1貓 | 2兔 |
3猴 | 4鼠 |
第二次
1猴 | 2鼠 |
3貓 | 4兔 |
第三次
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線l與l1關(guān)于點(diǎn)(1,-1)成中心對(duì)稱,若l的方程是2x+3y-6=0,則l1的方程是( )
A. 2x+3y+8=0 B. 2x+3y+7=0
C. 3x-2y-12=0 D. 3x-2y+2=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于下列程序:
a=input(“a=”);
if a>5
b=4;
else
if a<3
b=5;
else
b=9;
print(%io(2),a,b);
end
end
如果在運(yùn)行時(shí),輸入2,那么輸出的結(jié)果是( )
A. 2,5 B. 2,4
C. 2,3 D. 2,9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).
(1)求的解析式及單調(diào)遞減區(qū)間;
(2)是否存在常數(shù),使得對(duì)于定義域內(nèi)的任意, 恒成立,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次測(cè)量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,88,88,88,88.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)每個(gè)都加2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對(duì)應(yīng)相同的是( )
A. 眾數(shù) B. 平均數(shù) C. 標(biāo)準(zhǔn)差 D. 中位數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com