分析 (1)利用等差數(shù)列的通項(xiàng)公式與求和公式即可得出.
(2)利用裂項(xiàng)求和方法即可得出.
解答 解:(1)設(shè)等差數(shù)列{an}的公差為d:∵a3=7,a5+a7=26,
∴a1+2d=7,2a1+10d=26,
聯(lián)立解得a1=3,d=2,
∴an=3+2(n-1)=2n+1.
Sn=$\frac{n(3+2n+1)}{2}$=n2+2n.
(2)$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$.
∴數(shù)列$\{\frac{1}{{a}_{n}{a}_{n+1}}\}$的前n項(xiàng)和Tn=$\frac{1}{2}[(\frac{1}{3}-\frac{1}{5})$+$(\frac{1}{5}-\frac{1}{7})$+…+$(\frac{1}{2n+1}-\frac{1}{2n+3})]$
=$\frac{1}{2}(\frac{1}{3}-\frac{1}{2n+3})$
=$\frac{n}{6n+9}$.
點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式、裂項(xiàng)求和方法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 工廠生產(chǎn)輪胎抽樣調(diào)查中,若直徑D落在[μ-2σ,μ+2σ]外部,則認(rèn)為生產(chǎn)可能異常 | |
B. | 在回歸分析中,r越大,變量之間線性相關(guān)程度越高 | |
C. | 在正態(tài)分布中,σ越大,相應(yīng)的分布密度曲線越高瘦 | |
D. | 在線性回歸分析中,利用最小二乘法求得的回歸直線滿足br>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 2 | C. | $\sqrt{3}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0.4 | B. | 0.1 | C. | 0.6 | D. | 0.9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $C_{12}^4C_8^4C_4^4$ | B. | $A_{12}^4A_8^4A_4^4$ | ||
C. | $\frac{{C_{12}^4C_8^4C_4^4}}{A_3^3}$ | D. | $C_{12}^4C_8^4C_4^4A_3^3$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com