7.如圖,PA⊥平面ABCD,AD∥BC,AD=2BC,AB⊥BC,點E為PD中點.
(1)求證:AB⊥PD;
(2)求證:CE∥平面PAB.

分析 (1)推導(dǎo)出PA⊥AB,AB⊥AD,由此能證明AB⊥平面PAD,從而AB⊥PD.
(2)取PA的取中點F,連結(jié)EF∥AD,推導(dǎo)出四邊形BCEF是平行四邊形,從而EC∥BF,由此能證明CE∥平面PAB.

解答 證明:(1)∵PA⊥平面ABCD,AB?平面ABCD,
∴PA⊥AB,
又∵AB⊥BC,AD∥BC,∴AB⊥AD,
又∵PA⊥AB,PA∩AD=A,
∴AB⊥平面PAD,
又PD?平面PAD,∴AB⊥PD.
(2)取PA的取中點F,連結(jié)EF∥AD,EF=$\frac{1}{2}$AD,
又AD∥BC,AD=2BC,
∴EF∥BC,EF=BC,
∴四邊形BCEF是平行四邊形,∴EC∥BF,
∵EC?平面PAB,BF?平面PAB,
∴CE∥平面PAB.

點評 本題考查線線垂直的證明,考查線面平行的證明,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{y≥0}\\{x-y≥0}\\{2x-y-2≥0}\end{array}\right.$,則ω=$\frac{y-1}{x+1}$的取值范圍是(  )
A.[-1,$\frac{1}{3}$]B.[-$\frac{1}{2}$,$\frac{1}{3}$]C.[-$\frac{1}{2}$,1)D.[-$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知圓柱的底面直徑與高都等于球的直徑,若該球的表面積為48π,則圓柱的側(cè)面積為48π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=lnx+ax2-ax,其中a∈R.
(1)當a=0時,求函數(shù)f(x)在x=1處的切線方程;
(2)若函數(shù)f(x)在定義域上有且僅有一個極值點,求實數(shù)a的取值范圍;
(3)若對任意x∈[1,+∞),f(x)≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若實數(shù)x,y滿足$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y-2≥0}\end{array}\right.$,則z=3x+y的取值范圍是[2,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知等差數(shù)列{an}滿足:a3=7,a5+a7=26,{an}的前n項和為Sn
(1)求an及Sn
(2)求數(shù)列$\{\frac{1}{{a}_{n}{a}_{n+1}}\}$的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若多項式x+x11=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10+a11(x+1)11,則a10的值為-11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,三內(nèi)角A,B,C的對邊分別為a,b,c,若-$\frac{1}{2}$tanA=sinBcosC+cosBsinC,且△ABC的面積為2$\sqrt{3}$.
(1)求bc的值;
(2)若b=2c,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,直三棱柱ABC-A1B1C1的體積為V,點P、Q分別在側(cè)棱A A1和C C1上,AP=C1Q,則多面體A1B1C1-PBQ的體積為( 。
A.$\frac{3V}{4}$B.$\frac{2V}{3}$C.$\frac{V}{2}$D.$\frac{V}{3}$

查看答案和解析>>

同步練習冊答案