15.已知f(x)=|2x-4|,g(x)=|x+3|.
(1)解不等式f(x)+g(x)>7;
(2)令h(x)=f(x)+2g(x),求h(x)的最小值,并求出當(dāng)h(x)取的最小值時(shí)x的取值范圍.

分析 (1)把要求得不等式去掉絕對(duì)值,化為與之等價(jià)的3個(gè)不等式組,求得每個(gè)不等式組的解集,再取并集,即得所求.
(2)利用絕對(duì)值三角不等式求得h(x)的最小值,可得此時(shí)x的取值范圍.

解答 解:(1)不等式f(x)+g(x)>7,即|2x-4|+|x+3|>7,、
等價(jià)于 $\left\{\begin{array}{l}{x<-3}\\{4-2x-x-3>7}\end{array}\right.$①,或$\left\{\begin{array}{l}{-3≤x≤2}\\{4-2x+x+3>7}\end{array}\right.$②,或$\left\{\begin{array}{l}{x>2}\\{2x+4+x+3>7}\end{array}\right.$③.
解①求得 x<-3,解②求得-3≤x<0,解③求得x>$\frac{8}{3}$,
綜上可得,不等式的解集為(∞,0)∪($\frac{8}{3}$,+∞).
(2)h(x)=f(x)+2g(x)=|2x-4|+|2x+6|≥|2x-4-(2x+6)|=10,
故h(x)的最小值為10.此時(shí),-3≤x≤2,
故當(dāng)h(x)取的最小值時(shí)x的取值范圍為[-3,2].

點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的解法,絕對(duì)值三角不等式,體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{{x}^{2}}{ax+b}$(a,b為常數(shù)),且方程f(x)=x-12有兩個(gè)實(shí)根為x1=3,x2=4.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)k>2,解關(guān)于x的不等式:f(x)<$\frac{(k+1)x-k}{2-x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知△ABC的頂點(diǎn)A(5,1),AB邊上的中線CM所在直線方程為2x-y-5=0AC邊上的高BH所在直線方程為x-2y-5=0.
求①頂點(diǎn)C的坐標(biāo);
②直線BC的方程;
③過A、C兩點(diǎn)且圓心在直線y=x上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知集合A={x|-1≤x≤a},B={y|y=2x+3,x∈A},C={y|y=-x+1,x∈A},C?B,則實(shí)數(shù)a的取值范圍是$-\frac{1}{2}≤a≤0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知a>0,b>0,c>0,設(shè)函數(shù)f(x)=|x-b|+|x+c|+a,x∈R
(Ⅰ)若a=b=c=1,求不等式f(x)<5的解集;
(Ⅱ)若函數(shù)f(x)的最小值為1,證明:$\frac{1}{a+b}$+$\frac{4}{b+c}$+$\frac{9}{c+a}$≥18(a+b+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.己知一幾何體的三視圖,試根據(jù)三視圖計(jì)算出它的表面積和體積(結(jié)果保留π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(文科)(1)化簡(jiǎn)$\frac{tan(π+α)cos(2π+α)sin(α-\frac{3}{2}π)}{cos(-3π+α)sin(3π-α)}$.
(2)已知f(x)=$\frac{1}{2}$sin2x+sinx,求f′(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如果x∈(0,π),則y=cosx+2sinx的值域是( 。
A.[-$\sqrt{5}$,$\sqrt{5}$]B.(-1,1)C.(-1,$\sqrt{5}$]D.(-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{x+a}{{x}^{2}+1}$是定義在區(qū)間[-1,1]上的奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)判斷函數(shù)f(x)在[-1,1]上的單調(diào)性,并證明;
(3)解不等式:f(5x-1)<f(6x2

查看答案和解析>>

同步練習(xí)冊(cè)答案