【題目】如圖,平面四邊形中,,是,中點(diǎn),,,,將沿對(duì)角線折起至,使平面平面,則四面體中,下列結(jié)論不正確的是( )
A. 平面
B. 異面直線與所成的角為
C. 異面直線與所成的角為
D. 直線與平面所成的角為
【答案】C
【解析】
根據(jù)題意,依次分析命題:利用中位線性質(zhì)可得,可證A選項(xiàng)成立,根據(jù)面面垂直的性質(zhì)定理可判斷B選項(xiàng),根據(jù)異面直線所成角的定義判斷C,根據(jù)線面角的定義及求解可判斷D,綜合可得答案.
A選項(xiàng):因?yàn)?/span>,分別為和兩邊中點(diǎn),所以,即平面,A正確;
B選項(xiàng):因?yàn)槠矫?/span>平面,交線為,且,所以平面,即,故B正確;
C選項(xiàng):取邊中點(diǎn),連接,,則,所以為異面直線與所成角,又,,,即,故C錯(cuò)誤,
D選項(xiàng):因?yàn)槠矫?/span>平面,連接,則所以平面,連接FC,所以為異面直線與所成角,又,∴,
又, sin=,∴,D正確,
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)統(tǒng)計(jì),某蔬菜基地西紅柿畝產(chǎn)量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對(duì)應(yīng)數(shù)據(jù)的散點(diǎn)圖,如圖所示.
(1)依據(jù)數(shù)據(jù)的散點(diǎn)圖可以看出,可用線性回歸模型擬合與的關(guān)系,請(qǐng)計(jì)算相關(guān)系數(shù)并加以說明(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);
(2)求關(guān)于的回歸方程,并預(yù)測(cè)液體肥料每畝使用量為12千克時(shí),西紅柿畝產(chǎn)量的增加量約為多少?
附:相關(guān)系數(shù)公式,參考數(shù)據(jù):,.
回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.
(1)求該拋物線的方程;
(2) 為坐標(biāo)原點(diǎn),為拋物線上一點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某屆奧運(yùn)會(huì)上,中國隊(duì)以26金18銀26銅的成績列金牌榜第三獎(jiǎng)牌榜第二.某校體育愛好者在高三年級(jí)一班至六班進(jìn)行了“本屆奧運(yùn)會(huì)中國隊(duì)表現(xiàn)”的滿意度調(diào)查(結(jié)果只有“滿意”和“不滿意”兩種),從被調(diào)查的學(xué)生中隨機(jī)抽取了60人,具體的調(diào)查結(jié)果如下表:
班號(hào) | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
頻數(shù) | 6 | 10 | 13 | 11 | 9 | 11 |
滿意人數(shù) | 5 | 9 | 10 | 6 | 7 | 7 |
(1)在高三年級(jí)全體學(xué)生中隨機(jī)抽取1名學(xué)生,由以上統(tǒng)計(jì)數(shù)據(jù)估計(jì)該生持滿意態(tài)度的概率;
(2)若從一班和二班的調(diào)查對(duì)象中隨機(jī)選取4人進(jìn)行追蹤調(diào)查,記選中的4人中對(duì)“本屆奧運(yùn)會(huì)中國隊(duì)表現(xiàn)”不滿意的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程選講
在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸建立極坐標(biāo)系, 已知曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為.
(Ⅰ)寫出曲線和直線的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線過點(diǎn)與曲線交于不同兩點(diǎn),的中點(diǎn)為,與的交點(diǎn)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,,直線過點(diǎn),且與拋物線交于,兩點(diǎn).
(1)求拋物線的方程及點(diǎn)的坐標(biāo);
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)和,圓是以為圓心,半徑為的圓,點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線和半徑所在的直線交于點(diǎn).
(1)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡方程;
(2)已知,是曲線上的兩點(diǎn),若曲線上存在點(diǎn),滿足(為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,四個(gè)點(diǎn),,,中有3個(gè)點(diǎn)在橢圓:上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過原點(diǎn)的直線與橢圓交于,兩點(diǎn)(,不是橢圓的頂點(diǎn)),點(diǎn)在橢圓上,且,直線與軸、軸分別交于、兩點(diǎn),設(shè)直線,的斜率分別為,,證明:存在常數(shù)使得,并求出的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是函數(shù)(,,,)在區(qū)間上的圖象,為了得到這個(gè)函數(shù)的圖象,只需將()的圖像上所有的點(diǎn)( )
A. 向左平移個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
B. 向左平移個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變
C. 向左平移個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
D. 向左平移個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com