某個幾何體的三視圖如圖所示(單位:m)
(1)求該幾何體的表面積;
(2)求該幾何體的體積.
分析:通過三視圖判斷幾何體的特征,(1)利用三視圖的數(shù)據(jù)求出幾何體的表面積;
(2)利用組合體的體積求出幾何體的體積即可.
解答:解:由三視圖可知,該幾何體是由半球和正四棱柱組成,棱柱是正方體棱長為:2,球的半徑為1,
(1)該幾何體的表面積=正方體的表面積+半球面面積-球的底面積.
∴S=6×2×2+2π×12-π×12=24+π(m2).
(2)該幾何體的體積為正方體的體積+半球的體積,
V=2×2×2+
1
2
×
4
3
×π×13=8+
2
3
π(m3
點評:本題考查三視圖復原幾何體形狀的判斷,幾何體的表面積與體積的求法,考查空間想象能力與計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知某個幾何體的三視圖如圖,試求它的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某個幾何體的三視圖如圖所示,根據(jù)圖中標出的尺寸(單位:cm),則這個幾何體的體積是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某個幾何體的三視圖如圖(俯視圖中的弧線是半圓),根據(jù)圖中標出的尺寸(單位:cm),可得這個幾何體的體積是( 。ヽm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•聊城一模)某個幾何體的三視圖如圖所示,則該幾何體的體積是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•臨沂二模)已知某個幾何體的三視圖如圖(正視圖的弧線是半圓),根據(jù)圖中標出的尺寸(單位:cm),可得這個幾何體的表面積是( 。

查看答案和解析>>

同步練習冊答案