8.某邊長(zhǎng)為1的正方體展開(kāi)圖如圖所示,在原正方體中,△ABC的面積為$\frac{1}{2}$.

分析 由邊長(zhǎng)為1的正方體展開(kāi)圖還原得到正方體,由此能求出△ABC的面積.

解答 解:由邊長(zhǎng)為1的正方體展開(kāi)圖還原得到如圖所示的正方體,

∴△ABC的面積S=$\frac{1}{2}×1×1$=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查三角形面積的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意正方體性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知a>0,($\frac{a}{{\sqrt{x}}}$-x)6展開(kāi)式的常數(shù)項(xiàng)為15,則$\int_{-a}^a$(x2+x+$\sqrt{1-{x^2}}}$)dx=$\frac{2}{3}+\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.集合A={(x,y)|x2+y2=4},B={(x,y)|(x-3)2+(y-4)2=r2},其中r>0.若A∩B有且僅有一個(gè)元素,則r的取值集合為(  )
A.{3}B.{7}C.{3,7}D.{2,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)函數(shù)f(x)=$\overrightarrow a$•$\overrightarrow b$,其中向量$\overrightarrow a$=(2cosx,$\sqrt{3}$cosx),$\overrightarrow b$=(cosx,2sinx).
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且a2+b2-c2≥ab,求f(C)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知四棱錐P-ABCD的底面是一個(gè)邊長(zhǎng)為2的正方形,側(cè)棱PD⊥底面ABCD,且PD=AD,E是線(xiàn)段PC的中點(diǎn)
(Ⅰ)求證:PA∥面BDE;
(Ⅱ)求二面角A-BD-E所成的平面角的余弦值大。
(Ⅲ)若將四棱錐P-ABCD的每個(gè)頂點(diǎn)染上一種顏色,并使同一條棱的兩端點(diǎn)異色,如果只有5種顏色可供使用,那么不同的染色方法的總是多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.集合A={1,2,3,4},集合B={1,4,7},則A∩B=( 。
A.{ 7 }B.{1,3}C.{1,4}D.{1,2,3,4,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.cos13°cos17°-sin17°sin13°=( 。
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,已知四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.
(1)求證:AB∥平面PCD;
(2)求證:面PBC⊥平面PAC;
(3)求二面角P-BC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某個(gè)服裝店經(jīng)營(yíng)某種服裝,在某周內(nèi)獲純利潤(rùn)y(元)與該周每天銷(xiāo)售這種服裝件數(shù)x之間的一組數(shù)據(jù)關(guān)系見(jiàn)下表:
x3456789
y66697381899091
已知:$\sum_{i=1}^7{x_i^2}$=280,$\sum_{i=1}^7{y_i^2}$=45309,$\sum_{i=1}^7{{x_i}{y_i}}$=3487.
參考公式:回歸直線(xiàn)的方程是:$\widehat{y}$=$\widehat$x+$\widehat{a}$,其中$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$x.
(1)求$\overline x$,$\overline y$;
(2)畫(huà)出散點(diǎn)圖;
(3)求獲純利潤(rùn)y與每天銷(xiāo)售件數(shù)x之間的線(xiàn)性回歸方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案