19.集合A={(x,y)|x2+y2=4},B={(x,y)|(x-3)2+(y-4)2=r2},其中r>0.若A∩B有且僅有一個元素,則r的取值集合為( 。
A.{3}B.{7}C.{3,7}D.{2,7}

分析 集合A與B中分別表示兩個圓,兩集合的交集僅有一個元素,即為兩圓相切,確定出r的取值即可.

解答 解:∵A={(x,y)|x2+y2=4},B={(x,y)|(x-3)2+(y-4)2=r2},
其中r>0,且A∩B有且僅有一個元素,
∴圓x2+y2=4與圓(x-3)2+(y-4)2=r2相切,
若兩圓外切,R+r=d,即$\sqrt{{3}^{2}+{4}^{2}}$=5=2+r,此時r=3;
若兩圓內(nèi)切,R-r=d,即$\sqrt{{3}^{2}+{4}^{2}}$=5=r-2,此時r=7,
綜上,r的取值集合為{3,7},
故選:C.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如表是某設(shè)備的使用年限x和所支出的維修費用y(萬元)的幾組對照數(shù)據(jù)
x3456
y2.5344.5
(I)請根據(jù)如表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(II)根據(jù)(I)求出的線性回歸方程,預(yù)測該設(shè)備使用8年時,維修費用是多少?
(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)=ax2+ax+1沒有零點,則實數(shù)a的取值范圍為[0,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知sin(α+π)=$\frac{4}{5}$,且sinαcosα<0,求3sin2(2π-α)+4cos2(π+α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,P為矩形ABCD所在平面外一點,PA⊥平面ABCD,若已知AB=3,AD=4,PA=1.
(Ⅰ)求點P到BD的距離;
(Ⅱ)求平面PBD與平面ABCD夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某地要舉行一次大型國際博覽會,為使志愿者較好地服務(wù)于大會,主辦方?jīng)Q定對40名志愿者進行一次考核.考核分為兩個科目:“地域文化”和“志愿者知識”,其中“地域文化”的考核成績分為10分、8分、6分、4分共四個檔次,“志愿者知識”的考核分為A、B、C、D共四個等級.這40名志愿者的考核結(jié)果如表:
分值
           等級           
人數(shù)
10分8分6分4分
A5170
B3271
C1063
D1120
(Ⅰ)從“志愿者知識”等級A中挑選2人,求這2人的“地域文化”考核得分均不小于8分的概率;
(Ⅱ)從“地域文化”考核成績?yōu)?0分的志愿者中挑選3人,記這3人中“志愿者知識”考核結(jié)果為A等級的人數(shù)為X,求隨機變量X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=3cos($\frac{π}{3}$-2x)的單調(diào)減區(qū)間是[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某邊長為1的正方體展開圖如圖所示,在原正方體中,△ABC的面積為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等比數(shù)列{an},a2=3,a5=81.
(Ⅰ)求a7和公比q;
(Ⅱ)設(shè)bn=an+log3an,求數(shù)列{bn}的前n項的和.

查看答案和解析>>

同步練習(xí)冊答案