(Ⅰ)求證:
3
+
7
<2
5

(Ⅱ)已知a>0,b>0且a+b>2,求證:
1+b
a
,
1+a
b
中至少有一個小于2.
考點(diǎn):不等式的證明
專題:不等式
分析:(Ⅰ)利用了分析法,和兩邊平方法,
(Ⅱ)利用了反證法,假設(shè):
1+b
a
,
1+a
b
都不小于2,則
1+b
a
≥2,
1+a
b
≥2,推得即a+b≤2,這與已知a+b>2矛盾,故假設(shè)不成立,從而原結(jié)論成立.
解答: (Ⅰ)證明:因?yàn)?span id="6fmpc0o" class="MathJye">
3
+
7
2
5
都是正數(shù),所以為了證明
3
+
7
<2
5
,
只要證 (
3
+
7
2<(2
5
2
只需證:10+2
21
<20,
即證:2
21
<10,
即證:
21
<5,
即證:21<25,
因?yàn)?1<25顯然成立,所以原不等式成立.
(Ⅱ)證明:假設(shè):
1+b
a
1+a
b
都不小于2,則
1+b
a
≥2,
1+a
b
≥2,
∵a>0,b>0,
∴1+b≥2a,1+a≥2b,
∴1+b+1+a≥2(a+b)
即 a+b≤2
這與已知a+b>2矛盾,故假設(shè)不成立,從而原結(jié)論成立.
點(diǎn)評:本題主要考查了推理論證的兩種方法分析法和反證法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},則A∪B=( 。
A、{2}
B、{2,3,4}
C、{1,2,3,4}
D、{0,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
4x
3x2+3
(x∈(0,2)),g(x)=
1
2
x2-lnx-a

(1)求f(x)的值域;
(2)若?x∈[1,2]使得g(x)=0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos2x+
3
sin2x.
(1)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)若關(guān)于x的方程f(x)-m=2在x∈[-
π
4
,
π
4
]上有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱錐P-ABC中,PA⊥底面ABC,△ABC為正三角形,D、E分別是BC、CA的中點(diǎn).
(1)證明:平面PBE⊥平面PAC
(2)試在BC上找一點(diǎn)F,使AD∥平面PEF?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sin(ωx+
π
4
)•cos(ωx+
π
4
)-sin(2ωx+π)(ω>0),且函數(shù)f(x)的最小正周期為π.
(1)求函數(shù)f(x)的解析式;
(2)若將函數(shù)f(x)的圖象向右平移
π
3
個單位長度,得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,
π
2
]上的最大值和最小值,并指出此時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校新生入學(xué)時(shí)該校選取甲、乙兩個高一新班(均為60人,入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同,勤奮程度和自覺性都一樣)分別采用A,B兩種方法教學(xué),為了解A,B兩種教學(xué)方法的效果,現(xiàn)隨機(jī)抽取甲、乙兩班各20名學(xué)生的市統(tǒng)考數(shù)學(xué)成績(單位:分)如下:
甲班:58,57,59,92,71,82,65,82,74,67,74,67,68,85,83,78,81,69,73;
乙班:64,73,80,81,90,82,84,91,69,78,83,89,97,94,68,82,69,76,81,98.
(1)分別完成甲、乙兩班各20名學(xué)生的市統(tǒng)考數(shù)學(xué)成績的頻率分布表,并作出頻率分布直方圖,根據(jù)頻率分布直方圖判斷哪個班的優(yōu)秀率高?(成績大于等于80分為優(yōu)秀)
甲班
分組頻數(shù)頻率
[90,100]
 
 
[80,90)
 
 
[70,80)
 
 
[60,70)
 
 
[50,60)
 
 
乙班
分組頻數(shù)頻率
[90,100]
 
 
[80,90)
 
 
[70,80)
 
 
[60,70)
 
 
[50,60)
 
 

(2)現(xiàn)從甲、乙兩班各20名市統(tǒng)考數(shù)學(xué)成績不低于85分的學(xué)生中各抽出2人,若成績不低于90分的學(xué)生獎勵100元,否則獎勵50元,求獎金總數(shù)不少于310元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(
x
2
+
π
4
)cos(
x
2
-
π
4
)-sin2
x
2
,先將f(x)的圖象向右平移
π
4
個單位,再將所得圖象上的所有點(diǎn)的橫坐標(biāo)縮短到原來的
1
2
,縱坐標(biāo)伸長到原來的
2
倍,得到g(x)的圖象.
(1)求f(x)的最小正周期;
(2)若x∈[0,
π
4
],求f(x)的值域;
(3)若F(x)=2af(x)+
a
2
g(x)+1,x∈[0,
π
4
],a≠0,試求F(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,側(cè)面PAD⊥底面ABCD,且AD=
2
PA=
2
PD.
(Ⅰ)求證:PA⊥CD;
(Ⅱ)求四棱錐P-ABCD的體積VP-ABCD

查看答案和解析>>

同步練習(xí)冊答案