如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,側(cè)面PAD⊥底面ABCD,且AD=
2
PA=
2
PD.
(Ⅰ)求證:PA⊥CD;
(Ⅱ)求四棱錐P-ABCD的體積VP-ABCD
考點:直線與平面垂直的性質(zhì),棱柱、棱錐、棱臺的體積
專題:空間位置關(guān)系與距離
分析:(Ⅰ)由已知條件得推導出CD⊥平面PAD,由此能證明PA⊥CD.
(Ⅱ)由已知條件推導出CD⊥平面PAD,CD=2,由此能求出四棱錐P-ABCD的體積VP-ABCD
解答: (Ⅰ)證明:∵平面PAD⊥平面ABCD,
平面PAD∩平面ABCD=AD,
又CD⊥AD,∴CD⊥平面PAD,
又PA?平面PAD,
∴PA⊥CD…(6分)
(Ⅱ)∵PA=PD=
2
2
AD=
2
,
∴PA2+PD2=AD2,∴PA⊥PD,S△PAD=
1
2
(
2
)2=1

又由(2)可知CD⊥平面PAD,CD=2,
VP-ADC=VC-PAD=
1
3
×1×2=
2
3
,
VP-ABCD=2VP-ADC=2×
2
3
=
4
3
.…(12分)
點評:本題考查異面直線垂直的證明,考查四棱錐的體積的求法,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(Ⅰ)求證:
3
+
7
<2
5

(Ⅱ)已知a>0,b>0且a+b>2,求證:
1+b
a
,
1+a
b
中至少有一個小于2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,已知PA⊥⊙O所在平面,AB是⊙O的直徑,點C是⊙O上任意一點,過A作AE⊥PC于點E,AF⊥PB于點F,求證:
(1)AE⊥平面PBC;
(2)平面PAC⊥平面PBC;
(3)PB⊥EF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1+2an•an+1-an=0,求數(shù)列{an}的前5項和S5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的多面體中,ABCD是菱形,BDEF是矩形,ED⊥面ABCD,∠BAD=
π
3

(1)求證:平面BCF∥面AED;
(2)若BF=BD=a,求四棱錐A-BDEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AA1⊥BC,∠A1AC=60°,AA1=AC=BC=1,A1B=
2

(1)求證:平面A1BC⊥平面ACC1A1
(2)若D為AB中點,求證:BC1∥平面A1CD;
(3)若D為AB得三等分點,且
AD
DB
=2,求平面A1CD將三棱柱分成左,右兩部分體積的比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一幾何體的三視圖如圖所示,點F,G分別為AC,DE的中點.
(1)求證:FG∥平面ABE;
(2)求證:平面ACE⊥平面ABD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)有8名青年,其中有5名能勝任英語翻譯工作;有4名青年能勝任德語翻譯工作(其中有1名青年兩項工作都能勝任),現(xiàn)在要從中挑選5名青年承擔一項任務,其中3名從事英語翻譯工作,2名從事德語翻譯工作,則有多少種不同的選法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的通項為an=1+(-e)-n(其中e為自然對數(shù)的底數(shù)),則該數(shù)列各項取值最大、最小兩項值的和為
 

查看答案和解析>>

同步練習冊答案