已知圓 C方程為.
(1)若圓C與直線相交于M、N兩點,且OM⊥ON(O為坐標原點),求m;
(2)在(1)的條件下,求以MN為直徑的圓的方程.
(1)m=.(2)x2+y2-x-y=0.
【解析】(1)設M(x1,y1),N(x2,y2),然后根據(jù)OM⊥ON可得x1x2+y1y2=0,
所以,然后直線x+2y-4=0與圓方程聯(lián)立,消去x得關于y的一元二次方程,借助韋達定理代入上式即可得到關于m的方程,求出m的值.
(2) 因為以MN為直徑的圓的方程為(x-x1)(x-x2)+(y-y1)(y-y2)=0
即x2+y2-(x1+x2)x-(y1+y2)y=0,然后將(1)中x1+x2,y1+y2的值代入即可.
(1)設M(x1,y1),N(x2,y2),
則x1=4-2y1,x2=4-2y2,則x1x2=16-8(y1+y2)+4y1y2
∵OM⊥ON,∴x1x2+y1y2=0 ∴16-8(y1+y2)+5y1y2=0 ①
由 得5y2-16y+m+8=0
∴y1+y2=,y1y2=,代入①得,m=.
(2)以MN為直徑的圓的方程為
(x-x1)(x-x2)+(y-y1)(y-y2)=0 即x2+y2-(x1+x2)x-(y1+y2)y=0
∴所求圓的方程為x2+y2-x-y=0.
科目:高中數(shù)學 來源: 題型:
3 |
OQ |
OM |
ON |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源:2010年廣西省高二上學期期中考試數(shù)學試卷 題型:解答題
(12分)已知圓C方程為:
(1)直線l過點P(1,2),且與圓C交于A、B兩點,若|AB|= ,求直線l的方程;
(2)過圓C上一動點M作平行于x軸的直線m,設m與y軸的交點為N,若向量,求動點Q的軌跡方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com