分析 根據(jù)條件判斷函數(shù)的奇偶性和單調(diào)性,利用函數(shù)的奇偶性和單調(diào)性將不等式進(jìn)行轉(zhuǎn)化,利用參數(shù)分離法進(jìn)行求解即可.
解答 解:∵$f(x)=\frac{{{e^x}-{e^{-x}}}}{2},x∈R$,
∴f(-x)=$\frac{{e}^{-x}-{e}^{x}}{2}$=-$\frac{{e}^{x}-{e}^{-x}}{2}$=-f(x),
則函數(shù)f(x)為奇函數(shù),
且函數(shù)f(x)在(-∞,+∞)是為增函數(shù),
由f(msinθ)+f(1-m)>0,
得f(msinθ)>-f(1-m)=f(m-1),
則msinθ>m-1,
即(1-sinθ)m<1,
當(dāng)θ=$\frac{π}{2}$時,sinθ=1,此時不等式等價為0<1成立,
當(dāng)θ∈(0,$\frac{π}{2}$),0<sinθ<1,
∴m<$\frac{1}{1-sinθ}$,
∵0<sinθ<1,∴-1<-sinθ<0,
0<1-sinθ<1,則$\frac{1}{1-sinθ}$>1,
則m≤1,
故答案為:(-∞,1].
點評 本題主要考查不等式恒成立問題,利用參數(shù)分離法結(jié)合函數(shù)奇偶性和單調(diào)性的性質(zhì)是解決本題的關(guān)鍵,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a∥α,b∥α,則a∥b | B. | 若a∥b,b∥α,則a∥α | C. | 若a⊥α,b⊥α,則a∥b | D. | 若a⊥α,b⊥a,則b⊥α |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{16}$ | B. | $\frac{1}{243}$ | C. | $\frac{13}{243}$ | D. | $\frac{80}{243}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com