A. | $\frac{x^2}{3}-\frac{{4{y^2}}}{3}=1$ | B. | $\frac{{4{x^2}}}{3}-\frac{y^2}{3}=1$ | ||
C. | $\frac{{4{x^2}}}{3}-\frac{y^2}{3}=1$或$\frac{x^2}{3}-\frac{{4{y^2}}}{3}=1$ | D. | $\frac{{4{y^2}}}{3}-\frac{x^2}{3}=1$ |
分析 設(shè)雙曲線C的標(biāo)準(zhǔn)方程為x2-$\frac{{y}^{2}}{4}$=λ,λ≠0,利用待定系數(shù)法能求出雙曲線C的方程.
解答 解:∵在平面直角坐標(biāo)系中,雙曲線C過點(diǎn)P(1,1),
且其兩條漸近線的方程分別為2x+y=0和2x-y=0,
∴設(shè)雙曲線C的標(biāo)準(zhǔn)方程為x2-$\frac{{y}^{2}}{4}$=λ,λ≠0,
把P(1,1)代入,得:1-$\frac{1}{4}$=λ,解得λ=$\frac{3}{4}$,
∴雙曲線C的方程為$\frac{4{x}^{2}}{3}-\frac{{y}^{2}}{3}$=1.
故選:B.
點(diǎn)評(píng) 本題考查雙曲線的標(biāo)準(zhǔn)方程的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意雙曲線的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=cos(\frac{π}{6}-2x)$ | B. | $y=cos(2x-\frac{π}{3})$ | C. | $y=sin(x+\frac{π}{6})$ | D. | $y=sin(2x-\frac{π}{6})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,3] | B. | [0,6] | C. | [0,5] | D. | [0,12] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{3}{2}$ | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com